Skip to main content
Log in

Numerical simulation to study and optimize the significant hidden temperature gradients in adiabatic tests

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In adiabatic thermal analysis, correct measurement of temperature is usually ensured by means of a calibration procedure and thermal inertia corrections. However, there is a significant gradient within system, which not only makes the obtained test results inaccurate, but also causes serious errors in subsequent kinetic calculations and thermal risk assessment. Thus, estimations of the temperature gradients, which appear into the sample, are of highest interest to choose the right operational conditions that minimize that gradient. In this work, the CFD software has been applied to study this temperature gradient issue in adiabatic system. In view of the causes of temperature gradients, the influencing factors and the resulting analysis errors are all deeply researched. In addition, three different kinds of adiabaticity control model cases have also been simulated to explore the right operational conditions that minimize gradient and provide more reliable kinetics and thermal hazard parameters (Q, k0, Ea, n, TD24, TCL). After a comparative study, the authors define the more reliable operational conditions, which include selecting a suitable temperature response value and the adiabatic temperature control model. Finally, the reliability of the adiabaticity control model that achieves the minimum temperature gradients and provides the most accurate calculation results was verified through the different adiabatic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ρ/kg m−3 :

Density

λ/W m−1 K−1 :

Heat conductivity

C P/J g−1 K−1 :

Specific heat capacity

P/Pa:

Static pressure

u/m s−1 :

Velocity

\(\tau\)/N m−2 :

Stress tensor

μ/Pa s:

Coefficient of kinetic viscosity

g/m s−2 :

Gravitational acceleration

F/N:

External body forces

E/kJ mol−1 :

Internal energy

k eff/W m−1 K−1 :

Effective thermal conductivity

\(h\)/kJ kg−1 :

Specific enthalpy

J :

Diffusion flux

Y :

Mass fraction

\(S_{\text{h}}\)/W m−3 :

Volumetric heat sources

\(Q^{\infty }\)/kJ kg−1 :

Heat of decomposition

f(α):

Kinetic functions

\(k_{0}\)/m3 mol−1 s−1 :

Pre-exponential factor

\(E_{\text{a}}\)/kJ mol−1 :

Apparent activation energy

\(T\)/°C:

Temperature

\(z\) :

Autocatalytic factor

\(n\) :

Reaction order

α :

Reaction progress

\(R\) :

Gas constant (8.31415 J K−1 mol−1)

Φ :

Thermal inertia factor

T D24/°C:

Temperature at which TMRad is 24 h

TMRad/day:

Time to maximum rate under adiabatic condition

TCL/day:

Time to conversion limit

R 2 :

Correlation coefficient

References

  1. Towsend D, Fergnson H, Kohlbrand H. Application of ARC thermal kinetic data to the design of safety schemes for industrial reactors. Process Saf Environ Prot. 1995;14:71–6.

    Article  Google Scholar 

  2. Fu ZM, Li XR, Mok YS. Evaluation on thermal hazard of methyl ethyl ketone peroxide by using adiabatic method. J Loss Prevent Proc. 2003;16:389.

    Article  Google Scholar 

  3. Lin WC, Chen WC, Shu CM. Thermal stability evaluation of multiple tubes of fireworks by calorimetry approaches. J Therm Anal Calorim. 2019;138:2883–90.

    Article  CAS  Google Scholar 

  4. Wang YW, Shu CM. Calorimetric thermal hazards of tert-butyl hydroperoxide solutions. Ind Eng Chem Res. 2010;49:8959–68.

    Article  CAS  Google Scholar 

  5. Hsua JM, Su MS, Huang CY, Duh YS. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO. J Hazard Mater. 2012;217:19–28.

    Article  Google Scholar 

  6. Fisher HG, Forrest HS. Emergency relief system design using DIERS technology: the Design Institute for Emergency Relief Systems (DIERS) project manual. New York: Wiley; 2010.

    Google Scholar 

  7. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  8. Valdes OR, Moreno VC, Waldram S, Mannan MS. Runaway decomposition of dicumyl peroxide by open cell adiabatic testing at different initial conditions. Process Saf Environ Prot. 2016;102:251–62.

    Article  CAS  Google Scholar 

  9. Kossoy A, Akhmetshin Y. Identification of kinetic models for the assessment of reaction hazards. Process Saf Prog. 2007;26(3):209–20.

    Article  CAS  Google Scholar 

  10. Kumpinsky E. Detection of stealthy outliers in thermal-kinetics modeling. Thermochim Acta. 2008;478:6–12.

    Article  CAS  Google Scholar 

  11. Kossoy A, Sheinman I. Effect of temperature gradient in sample cells of adiabatic calorimeters on data interpretation. Thermochim Acta. 2010;500:93–9.

    Article  CAS  Google Scholar 

  12. Carlos GF, Begoña ÁG, Silvia GB, Ramón A. Significant hidden temperature gradients in thermogravimetric tests. Poly Test. 2018;68:388–94.

    Article  Google Scholar 

  13. Andreozzi A, Bianco N, Musto M. Adiabatic surface temperature as thermal/structural parameter in fire modeling: thermal analysis for different wall conductivities. Appl Therm Eng. 2014;65:422–32.

    Article  Google Scholar 

  14. Leung JC, Fauske HK, Fisher HG. Thermal runaway reactions in a low thermal inertia apparatus. Thermochim Acta. 1986;104:13–29.

    Article  CAS  Google Scholar 

  15. Cao CY, Zhang D, Lu S, Liu CC. Thermal decomposition behavior, kinetics, thermal safety and burning characteristics of guanidinium-5-aminotetrazole (GA) based propellants. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09063-1.

    Article  Google Scholar 

  16. Shu QJ, Liu J, Lan X, Wang C. Correction analysis for the deviation between vacuum furnace and material growth temperatures. Vacuum. 2017;144:21–6.

    Article  CAS  Google Scholar 

  17. Cheng H, Ju YL, Fu YZ. Thermal performance calculation with heat transfer correlations and numerical simulation analysis for typical LNG open rack vaporizer. Appl Therm Eng. 2019;149:1069–79.

    Article  Google Scholar 

  18. Wang SY, Zhang J, Chen WH. Numerical and experimental studies on decomposition and vent of di-tertbutyl peroxide in pressure vessel. Process Saf Environ Prot. 2018;120:97–106.

    Article  CAS  Google Scholar 

  19. Stoessel F. Thermal safety of chemical processes. New York: Wiley; 2008.

    Book  Google Scholar 

  20. Cao CR, Shu CM. Kinetic modeling for thermal hazard of 2,2′-azobis (2-methylpropionamide) dihydrochloride using calorimetric approach and simulation. J Therm Anal Calorim. 2019;137:1021–30.

    Article  CAS  Google Scholar 

  21. Abraham DG, Henningsmeyer D, Hudson JM, Matyas SM, Stevens JV. User defined function facility. U.S. Patent No. 5,301,231; 1994.

  22. Dermaut W, Fannes C, Thienen JV. Safety aspects of a cyanamide reaction: inherent safe design through kinetic modelling and adiabatic testing. Org Process Res Dev. 2007;11:1126–30.

    Article  CAS  Google Scholar 

  23. Bhattacharya A. A general kinetic model framework for the interpretation of adiabatic calorimeter rate data. Chem Eng J. 2005;110:67–78.

    Article  CAS  Google Scholar 

  24. Xu QY, Yang SJ, Ye SL. Modeling of a power compensated adiabatic reaction system for temperature control design and simulation analyses. Thermochim Acta. 2017;657:104–9.

    Article  CAS  Google Scholar 

  25. Tseng JM, Lin CP. Green thermal analysis technology for evaluating the thermal hazard of di-tert-butyl peroxide. Ind Eng Chem Res. 2011;50:9487–94.

    Article  CAS  Google Scholar 

  26. Thermal Safety Software (TSS). ChemInform Saint-Petersburg (CISP) Ltd., St. Petersburg, Russia. http://www.cisp.spb.ru.

  27. Rao GN, Zhang J, Chen WH. Simulation approach to decomposition kinetics and thermal hazards of hexamethylenetetramine. J Therm Anal Calorim. 2018;135:2447–56.

    Article  Google Scholar 

  28. Zhang J, Ma YY, Chen LP, Chen WH. Investigation of the decomposition kinetics and thermal hazards of 2,4-dinitrotoluene on simulation approach. Thermochim Acta. 2020;684:178350.

    Article  CAS  Google Scholar 

  29. Kersten RJA, Boers MN, Stork MM, Visser C. Results of a Round-Robin with di-tertiary-butyl peroxide in various adiabatic equipment for assessment of runaway reaction hazards. J Loss Prevent Proc. 2005;18:145–51.

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was financed by the National key R&D Program of China (2017YFC0804701-4). The authors thank for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanghua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, Y., Dong, Z. et al. Numerical simulation to study and optimize the significant hidden temperature gradients in adiabatic tests. J Therm Anal Calorim 146, 919–935 (2021). https://doi.org/10.1007/s10973-020-09972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09972-6

Keywords

Navigation