Skip to main content
Log in

Second law analysis of a mixture of ethylene glycol/water flow in modified heat exchanger tube by passive heat transfer enhancement technique

Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This experimental study presents the entropy generation analysis of diverging, converging–diverging and converging conically coiled wire inserts in a heat exchanger tube using ethylene glycol and water mixtures as a working fluid. The experiments are performed with three different volumetric ratios of ethylene glycol and water mixtures and two different pitch ratios of diverging, converging–diverging and converging conically coiled wire inserts. The effects of conically coiled wire inserts on the dimensionless entropy generation number and Bejan number are discussed for the Reynolds number ranging from 4627 to 25,099. The results indicated that the converging conically coiled wire inserts generate higher entropy rates than the other insert types. It is pointed out that the entropy generation numbers for the diverging conically coiled wire inserts used tube reach the lowest value for each fluid type. The experimental results revealed that because the friction forces increase with the use of ethylene glycol, the Bejan number is lower for the fluids with 20 and 40% ethylene glycol than pure water. The highest Bejan number of 0.968 is determined for the smooth tube with pure water at the lowest Reynolds number. The lowest Entropy generation number of 0.42 is obtained for a pure water as a working fluid and diverging conically coiled wire insert with pitch ratio of 2 at the Reynolds number 6882, and the highest entropy generation number of 0.94 is observed while the converging conically coiled wire insert with pitch ratio of 3 is used in tube flow at Reynolds number of 22,230 for fluid type with 60% water and 40% ethylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

Be:

Bejan number

c p :

Specific heat (J kg−1 K−1)

D :

Diameter (mm)

f :

Friction factor

h :

Convective heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1K−1)

L :

Length (mm)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Nu:

Nusselt number

N s :

Entropy generation number

\(\dot{S}_{\text{gen}}^{{\prime }}\) :

Entropy generation rate (W K−1)

P :

Pitch length (mm)

Pr:

Prandtl number

q :

Heat flux (W m−2)

Q :

Rate of heat transfer (W)

r :

Radius of the tube (mm)

Re:

Reynolds number

T :

Temperature (K)

U :

Average velocity (m s−1)

ΔP :

Pressure drop (Pa)

ΔV :

Differential voltage (V)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (kg m−1 s−1)

φ :

Volume concentration (%)

η :

Overall enhancement efficiency

ϑ :

Kinematic viscosity (m2 s−1)

b:

Bulk

c:

Conically coiled wire inserted tube

conv:

Convection

i:

Inlet

ins:

Insulation

iw:

Inner wall

m:

Mixture

o:

Outlet

ow:

Outer wall

pp:

Pumping power

p:

Passive technique

s:

Smooth tube

t:

Tube material

v:

Volumetric

W:

Water

ASHRAE:

American Society of Heating, Refrigeration and Air-conditioning Engineer

GNP:

Graphene nanoparticle

MCWNT:

Multiwall carbon nanotube

SWCNT:

Single-wall carbon nanotube

EG:

Ethylene glycol

W:

Water

References

  1. Bhattacharyya S, Chattopadhyay H, Benim AC. Heat transfer enhancement of laminar flow of ethylene glycol through a square channel fitted with angular cut wavy strip. Procedia Eng. 2016;157:19–28. https://doi.org/10.1016/j.proeng.2016.08.333.

    Article  CAS  Google Scholar 

  2. Bhattacharyya S, Banerjee A, Rahman MA, Saha R, Paul AR. Numerical analysis of heat transfer and flow dynamics in a pipe with square extrude bluff cylinder inserts. Energy Procedia. 2019;160:293–300. https://doi.org/10.1016/j.egypro.2019.02.156.

    Article  Google Scholar 

  3. Keklikcioglu O, Dagdevir T, Ozceyhan V. A CFD based thermo-hydroulic performance analysis in a tube fitted with stepped conical nozzle turbulators. J Therm Eng. 2016;2:913–20.

    CAS  Google Scholar 

  4. Skullong S, Promvonge P, Thianpong C, Jayranaiwachira N, Pimsarn M. Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl Therm Eng. 2018;129:1197–211. https://doi.org/10.1016/j.applthermaleng.2017.10.110.

    Article  Google Scholar 

  5. Zhang C, Wang D, Xiang S, Han Y, Peng X. Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation. Int J Heat Mass Transf. 2017;113:332–41. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.108.

    Article  CAS  Google Scholar 

  6. Wang G, Qian N, Ding G. Heat transfer enhancement in microchannel heat sink with bidirectional rib. Int J Heat Mass Transf. 2019;136:597–609. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.018.

    Article  Google Scholar 

  7. Gunes S, Karakaya E. Thermal characteristics in a tube with loose-fit perforated twisted tapes. Heat Transf Eng. 2015;36:1504–17.

    Article  CAS  Google Scholar 

  8. Gururatana S, Skullong S. Experimental investigation of heat transfer in a tube heat exchanger with airfoil-shaped insert. Case Stud Therm Eng. 2019;14:100462. https://doi.org/10.1016/j.csite.2019.100462.

    Article  Google Scholar 

  9. Eiamsa-ard S, Wongcharee K. Convective heat transfer enhancement using Ag–water nanofluid in a micro-fin tube combined with non-uniform twisted tape. Int J Mech Sci. 2018;146–147:337–54. https://doi.org/10.1016/j.ijmecsci.2018.07.040.

    Article  Google Scholar 

  10. Chen YS, Tian J, Fu Y, Tang ZF, Zhu HH, Wang NX. Experimental study of heat transfer enhancement for molten salt with transversely grooved tube heat exchanger in laminar-transition-turbulent regimes. Appl Therm Eng. 2018;132:95–101.

    Article  Google Scholar 

  11. Bartwal A, Gautam A, Kumar M, Mangrulkar CK, Chamoli S. Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring–metal wire net inserts. Chem Eng Process Process Intensif. 2018;124:50–70. https://doi.org/10.1016/j.cep.2017.12.002.

    Article  CAS  Google Scholar 

  12. Singh SK, Kumar M, Kumar A, Gautam A, Chamoli S. Thermal and friction characteristics of a circular tube fitted with perforated hollow circular cylinder inserts. Appl Therm Eng. 2018;130:230–41. https://doi.org/10.1016/j.applthermaleng.2017.10.090.

    Article  Google Scholar 

  13. Sawhney JS, Maithani R, Chamoli S. Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Appl Therm Eng. 2017;117:740–51. https://doi.org/10.1016/j.applthermaleng.2017.01.113.

    Article  Google Scholar 

  14. Chamoli S, Lu R, Xu D, Yu P. Thermal performance improvement of a solar air heater fitted with winglet vortex generators. Sol Energy. 2018;159:966–83. https://doi.org/10.1016/j.solener.2017.11.046.

    Article  Google Scholar 

  15. Gunes S, Ozceyhan V, Buyukalaca O. Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts. Exp Therm Fluid Sci. 2010;34:684–91. https://doi.org/10.1016/j.expthermflusci.2009.12.010.

    Article  Google Scholar 

  16. Gunes S, Senyigit E, Karakaya E, Ozceyhan V. Optimization of heat transfer and pressure drop in a tube with loose-fit perforated twisted tapes by Taguchi method and grey relational analysis. J Therm Anal Calorim. 2019;136:1795–806. https://doi.org/10.1007/s10973-018-7824-4.

    Article  CAS  Google Scholar 

  17. Gawande VB, Dhoble AS, Zodpe DB, Chamoli S. Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs. Sol Energy. 2016;131:275–95. https://doi.org/10.1016/j.solener.2016.02.040.

    Article  Google Scholar 

  18. Gawande VB, Dhoble AS, Zodpe DB, Chamoli S. Experimental and CFD-based thermal performance prediction of solar air heater provided with right-angle triangular rib as artificial roughness. J Braz Soc Mech Sci Eng. 2016;38:551–79.

    Article  Google Scholar 

  19. Gawande VB, Dhoble AS, Zodpe DB, Chamoli S. Experimental and CFD-based thermal performance prediction of solar air heater provided with chamfered square rib as artificial roughness. J Braz Soc Mech Sci Eng. 2016;38:643–63.

    Article  CAS  Google Scholar 

  20. Kunnarak PSK, Eiamsa VCS. Effect of sparsely placed twisted tapes installed with multiple-transverse twisted-baffles on heat transfer enhancement. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09202-8.

    Article  Google Scholar 

  21. Sheikholeslami ASM, Babazadeh MJH. Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09248-8.

    Article  Google Scholar 

  22. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2019;135:177–94. https://doi.org/10.1007/s10973-018-7044-y.

    Article  CAS  Google Scholar 

  23. Qi C, Liu M, Tang J. Influence of triangle tube structure with twisted tape on the thermo-hydraulic performance of nanofluids in heat-exchange system based on thermal and exergy efficiency. Energy Convers Manag. 2019;192:243–68. https://doi.org/10.1016/j.enconman.2019.04.047.

    Article  CAS  Google Scholar 

  24. Qi C, Wang G, Yan Y, Mei S, Luo T. Effect of rotating twisted tape on thermo-hydraulic performances of nanofluids in heat-exchanger systems. Energy Convers Manag. 2018;166:744–57. https://doi.org/10.1016/j.enconman.2018.04.086.

    Article  CAS  Google Scholar 

  25. Alwan A, Alshaheen S, Kianifar A, Rahimi AB. Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT module energy and exergy analysis. J Therm Anal Calorim. 2019;5:1–13. https://doi.org/10.1007/s10973-019-08724-5.

    Article  CAS  Google Scholar 

  26. Bahiraei M, Mazaheri N, Aliee F. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts. Powder Technol. 2019;345:692–703. https://doi.org/10.1016/j.powtec.2019.01.060.

    Article  CAS  Google Scholar 

  27. Hong Y, Du J, Wang S. Turbulent thermal, fluid flow and thermodynamic characteristics in a plain tube fitted with overlapped multiple twisted tapes. Int J Heat Mass Transf. 2017;115:551–65. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.017.

    Article  Google Scholar 

  28. Hong Y, Du J, Wang S, Ye WB, Huang SM. Turbulent thermal-hydraulic and thermodynamic characteristics in a traverse corrugated tube fitted with twin and triple wire coils. Int J Heat Mass Transf. 2019;130:483–95. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.087.

    Article  Google Scholar 

  29. Du J, Hong Y, Wang S, Ye WB, Huang SM. Experimental thermal and flow characteristics in a traverse corrugated tube fitted with regularly spaced modified wire coils. Int J Therm Sci. 2018;133:330–40.

    Article  Google Scholar 

  30. Eren H, Celik N, Kurtbas I, Yildiz S. Exergy analysis of coil-spring turbulators inserted in the horizontal concentric tubes. J Heat Transf. 2010;132:101802.

    Article  Google Scholar 

  31. Kurtbaş I, Durmuş A, Eren H, Turgut E. Effect of propeller type swirl generators on the entropy generation and efficiency of heat exchangers. Int J Therm Sci. 2007;46:300–7.

    Article  Google Scholar 

  32. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. J Mol Liq. 2018;269:407–16. https://doi.org/10.1016/j.molliq.2018.08.019.

    Article  CAS  Google Scholar 

  33. Sheikholeslami M, Jafaryar M, Ganji DD, Li Z. Exergy loss analysis for nanofluid forced convection heat transfer in a pipe with modified turbulators. J Mol Liq. 2018;262:104–10. https://doi.org/10.1016/j.molliq.2018.04.077.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M, Jafaryar AAM. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  35. Sheikholeslami M, Jafaryar M, Li Z. Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq. 2018;263:489–500. https://doi.org/10.1016/j.molliq.2018.04.147.

    Article  CAS  Google Scholar 

  36. Feizabadi A, Khoshvaght-Aliabadi M, Rahimi AB. Experimental evaluation of thermal performance and entropy generation inside a twisted U-tube equipped with twisted-tape inserts. Int J Therm Sci. 2019;145:106051.

    Article  Google Scholar 

  37. Keklikcioglu O, Ozceyhan V. Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Energy. 2017;139:65–75.

    Article  Google Scholar 

  38. Kumar B, Srivastava GP, Kumar M, Patil AK. A review of heat transfer and fluid flow mechanism in heat exchanger tube with inserts. Chem Eng Process Process Intensif. 2018;123:126–37. https://doi.org/10.1016/j.cep.2017.11.007.

    Article  CAS  Google Scholar 

  39. García A, Solano JP, Vicente PG, Viedma A. Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts. Int J Heat Mass Transf. 2007;50:3176–89.

    Article  Google Scholar 

  40. Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks. Appl Energy. 2009;86:2244–8. https://doi.org/10.1016/j.apenergy.2008.12.020.

    Article  CAS  Google Scholar 

  41. Peyghambarzadeh SM, Hashemabadi SH, Hoseini SM, Seifi Jamnani M. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int Commun Heat Mass Transf. 2011;38:1283–90.

    Article  CAS  Google Scholar 

  42. Cengel YA, Cimbala JM. Fuid mechanics: fundamentals and applications. New York: MCGraw-Hill Education; 2012.

    Google Scholar 

  43. American Society of heating refrigerating and air-conditioning engineers. ASHRAE Handbook 2017 Fundamentals SI. Atlanta; 2017.

  44. Bejan A. Exergy analysis, entropy generation minimization, and constructal theory. Mech Eng Handb. 2006. https://doi.org/10.1002/0471777471.ch4.

    Article  Google Scholar 

  45. Bejan A. Thermodynamic optimization of geometry in engineering flow systems. Exergy Int J. 2001;1:269–77.

    Article  Google Scholar 

  46. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. 1st ed. Bejan A, editor. New York: CRC Press LLC; 1995.

  47. Zimparov VD, Vulchanov NL. Performance evaluation criteria for enhanced heat transfer surfaces. Int J Heat Mass Transf. 1994;37:1807–16.

    Article  CAS  Google Scholar 

  48. Kline S, McClintock F. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  49. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf. 1985;12:3–22.

    Article  Google Scholar 

  50. Blasius H. Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens. Berlin: Springer; 1913. p. 1–41. https://doi.org/10.1007/978-3-662-02239-9_1.

    Book  Google Scholar 

  51. Yilmaz M, Sara O, Karsli S. Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int J. 2001;1:278–94.

    Article  Google Scholar 

  52. Ibrahim MM, Essa MA, Mostafa NH. A computational study of heat transfer analysis for a circular tube with conical ring turbulators. Int J Therm Sci. 2019;137:138–60. https://doi.org/10.1016/j.ijthermalsci.2018.10.028.

    Article  Google Scholar 

  53. Sayed Ahmed SAE, Ibrahim EZ, Ibrahim MM, Essa MA, Abdelatief MA, El-Sayed MN. Heat transfer performance evaluation in circular tubes via internal repeated ribs with entropy and exergy analysis. Appl Therm Eng. 2018;144:1056–70. https://doi.org/10.1016/j.applthermaleng.2018.09.018.

    Article  Google Scholar 

  54. Wang W, Zhang Y, Liu J, Wu Z, Li B, Sundén B. Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes. Numer Heat Transf Part A Appl. 2018;73:788–805. https://doi.org/10.1080/10407782.2018.1459137.

    Article  Google Scholar 

  55. Mohseni-Gharyehsafa B, Ebrahimi-Moghadam A, Okati V, Farzaneh-Gord M, Ahmadi MH, Lorenzini G. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2019;135:801–11. https://doi.org/10.1007/s10973-018-7276-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Scientific Research Project Division of Erciyes University for the financial support under the Contracts: FDK-2018-8045 and the Scientific and Technological Research Council of Turkey (TUBITAK) under the Contract: 1649B031702999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Keklikcioglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keklikcioglu, O., Dagdevir, T. & Ozceyhan, V. Second law analysis of a mixture of ethylene glycol/water flow in modified heat exchanger tube by passive heat transfer enhancement technique. J Therm Anal Calorim 140, 1307–1320 (2020). https://doi.org/10.1007/s10973-020-09445-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09445-w

Keywords

Navigation