Ultrasonic modification of purple taro starch (Colocasia esculenta B. Tini): structural, psychochemical and thermal properties

  • Alana Martins
  • Cleoci Beninca
  • Camila Delinski Bet
  • Radla Zabian Bassetto Bisinella
  • Cristina S. de Oliveira
  • Polyanna Silveira Hornung
  • Egon SchnitzlerEmail author


Purple taro tubers (Colocasia esculenta B. Tini) were used in extraction of starch by aqueous methodology. After isolation, the starch was characterised and subjected to physical modification by ultrasound technique, using different amplitudes (40, 50 and 60%). Starch characterisation was performed by thermal analysis, pasting properties, X-ray powder diffractometry and high-resolution scanning electron microscopy. The root presented high carbohydrate content and low protein and lipid content. The apparent amylose content obtained from native starch was 26.45%. From thermal analysis, three major mass loss events were observed for all samples, and due the modification, an increase in thermal stability was achieved. There was a decrease in transition temperatures during the gelatinisation process after sonicated samples. The degree of relative crystallinity was lower for modified starches. An increase in peak and final viscosities was observed for physically modified samples, accompanied by a decrease in pasting temperature. The size of the granules showed a slight decrease, and agglomerations were not observed in this studied amplitude range.


Ultrasound Tuber Thermal analysis 



Authors are grateful to Brazilian Government scholarships CNPq – Proc. No. 307654/2017-6, CAPES and Araucária Foundation Prot. No. 16443. The authors also thank to the Multi-user Laboratory C-LABMU (State University of Ponta Grossa-PR-Brazil).


  1. 1.
    Andres C, AdeOluwa OO, Bhullar GS. Yam (Dioscorea spp.). In: Thomas B, Murray BG, Murphy DJ, editors. Encyclopedia of applied plant science. 2nd ed. New York: Academic Press; 2016. p. 435–41.Google Scholar
  2. 2.
    Asiedu R, Sartie A. Crops that feed the World 1. Yams. Food Secur. 2010;2:305–15.CrossRefGoogle Scholar
  3. 3.
    Hornung OS, Barbi RCT, Teixeira GL, Ávila S, Silva FLA, Lazzarotto M, Silveira JLM, Beta T, Ribani RH. Brazilian Amazon white yam (Dioscorea sp.) starch impact on functional properties due to chemical and physical modifications processes. J Therm Anal Calorim. 2018;3:2075–88.CrossRefGoogle Scholar
  4. 4.
    Simsek S, El SN. In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chem. 2015;168:257–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Sukhija S, Singh S, Riar CS. Review article: isolation of starches from different tubers and study of their physicochemical, thermal, rheological and morphological characteristics. Starch. 2016;68:160–8.CrossRefGoogle Scholar
  6. 6.
    Pérez EE, Gutiérrez ME, Pacheco De Delahaye E, Tovar J, Lares M. Production and characterization of Xanthosoma sagittifolium and Colocasia esculenta flours. J Food Sci. 2007;72:367–72.CrossRefGoogle Scholar
  7. 7.
    Aboubakar NYN, Scher J, Mbofung CMF. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J Food Eng. 2008;86:294–305.CrossRefGoogle Scholar
  8. 8.
    Sefa-Dedeh S, Sackey EKA. Starch structure and some properties of cocoyam (Xanthosoma sagittifolium and Colocasia esculenta) starch and raphides. Food Chem. 2002;79:435–44.CrossRefGoogle Scholar
  9. 9.
    Jane J, Shen L, Chen J, Lim S, Kasemsuwan T, Nip WK. Physical and chemical studies of taro starches and flours. Cereal Chem. 1992;69:528–35.Google Scholar
  10. 10.
    Hong JS, Gomand SV, Delcur JA. Preparation of cross-linked maize (Zea mays L.) starch in different reaction media. Carbohydr Polym. 2015;124:302–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Jambrak AR, Herceg Z, Subaríc D, Babíc J, Brncíc M, Brnčić SR, Bosiljkov T, Cvek D, Tripalo B, Gelo J. Ultrasound effect on physical properties of corn starch. Carbohydr Polym. 2010;79(1):91–100.CrossRefGoogle Scholar
  12. 12.
    Zhu F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol. 2015;43:1–17.CrossRefGoogle Scholar
  13. 13.
    Hu A, Jiao S, Zheng J, Li L, Fan Y, Chen L, Zhang Z. Ultrasonic frequency effect on corn starch and its cavitation. LWT Food Sci Technol. 2015;60(2):941–7.CrossRefGoogle Scholar
  14. 14.
    Sujka M. Ultrasonic modification of starch-impact on granules porosity. Ultrason Sonochem. 2017;37:424–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Bet CD, Oliveira CS, Beninca C, Colman TAD, Lacerda LG, Schnitzle E. Influence of the addition of hydrocolloids on the thermal, pasting and structural properties of starch from common vetch seeds (Vicia sativa sp.). J Therm Anal Calorim. 2019;133(1):549–57.CrossRefGoogle Scholar
  16. 16.
    AOAC. Official methods of analysis. 17th ed. Washington, DC: Association of Official Analytical Chemists; 2000.Google Scholar
  17. 17.
    Bet CD, Oliveira SC, Colman TAD, Bisinella RZB, Beninca C, Lacerda LG, Ramos AP, Schnitzler E. Aqueous extraction of organic amaranth starch and their by-products characterisation before and after degreasing. J Therm Anal Calorim. 2019;138(4):1–17.CrossRefGoogle Scholar
  18. 18.
    Falade KO, Omiwale OO. Effect of pretreatments on color, functional and pasting properties of white (Dioscorea rotundata) and yellow yam (Dioscorea cayenensis) varieties. J Food Process Preserv. 2015;39:1542–54.CrossRefGoogle Scholar
  19. 19.
    Liu P, Wang R, Kang X, Cui B, Yu B. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films. Ultrason Sonochem. 2018;44:215–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Bet CD, Oliveira CS, Colman TAD, Marinho MT, Lacerda LG, Ramos AP, Schnitzler E. Organic amaranth starch: a study of its technological properties after heat moisture treatment. Food Chem. 2018;264:435–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Kubiaki FT, Figueroa AM, Oliveira CS, Demiate IM, Schnitzler E, Lacerda LG. Effect of acid–alcoholic treatment on the thermal, structural and pasting characteristics of European chestnut (Castanea sativa, Mill) starch. J Therm Anal Calorim. 2018;131:587–94.CrossRefGoogle Scholar
  22. 22.
    Kuk RS, Waiga LH, Oliveira CS, Bet CD, Lacerda LG, Schnitzler E. Thermal, structural and pasting properties of Brazilian ginger (Zingiber officinale Roscoe) starch. Ukr Food J. 2017;6:674–85.CrossRefGoogle Scholar
  23. 23.
    Ito VC, Bet CD, Wojeicchowski JP, Demiate IM, Spoto MHF, Schnitzler E, Lacerda LG. Effects of gamma radiation on the thermoanalytical, structural and pasting properties of black rice (Oryza sativa L.) flour. J Therm Anal Calorim. 2018;133:529–37.CrossRefGoogle Scholar
  24. 24.
    Aljuhaimi F, Şimşek S, Özcan MM. Comparison of chemical properties of taro (Colocasia esculenta L.) and tigernut (Cyperus esculentus) tuber and oils. J Food Process Preserv. 2017;42(3):e13534.CrossRefGoogle Scholar
  25. 25.
    Da Costa MR, Alencar ER, Leandro ES, Mendonça MA, Ferreira WFS. Characterization of the kefir beverage produced from yam (Colocasia esculenta L.), sesame seed (Sesamum indicum L.) and bean (Phaseolus vulgaris L.) extracts. J Food Sci Technol. 2018;55(12):4851–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Huang AS, Tanudjaja LS. Application of anion exchange high-performance liquid chromatography in determining oxalates in taro (Colocasia esculenta (L.) Schott) corms. J Agric Food Chem. 1992;40:2123–6.CrossRefGoogle Scholar
  27. 27.
    Kaushal P, Kumar V, Sharma HK. Utilization of taro (Colocasia esculenta): a review. J Food Sci Technol. 2013;52(1):27–40.CrossRefGoogle Scholar
  28. 28.
    Njintang NY, Mbofung CMF. Development of taro (Colocasia esculenta L. schoff) flour as ingredient in food processing: effect of gelatinization and drying temperature on the dehydration kinetics and color of flour. J Food Eng. 2003;58:259–65.CrossRefGoogle Scholar
  29. 29.
    Njintang NY, Mbofung CMF, Kesteloot R. Multivariate analysis of the effect of drying method and particle size of flour on the instrumental texture characteristics of paste made from two varieties of taro flour. J Food Eng. 2007;81:250–6.CrossRefGoogle Scholar
  30. 30.
    Abegunde OK, Mu TH, Chen JW, Deng FM. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocoll. 2013;33:169–77.CrossRefGoogle Scholar
  31. 31.
    Pietrzyk S, Fortuna T, Łabanowska M, Kurdziel M, Królikowska K, Juszczak L. Effect of oxidation level of high-amylose corn starch on its acetylation, molecular structure and functional properties. Starch. 2019;71(3–4):1800097.CrossRefGoogle Scholar
  32. 32.
    Zhu X, Cui W, Zhang E, Sheng J, Yu X, Xiong F. Morphological and physicochemical properties of starches isolated from three taro bulbs. Starch. 2017;70(1–2):1700168.Google Scholar
  33. 33.
    Ogunmolasuyi AM, Egwim EC, Adewoyin MA, Awoyinka O. A comparative study of functional and structural properties of starch extracted from Dioscorea rotundata and Colocasia esculenta. Starch. 2016;68(7–8):771–7.CrossRefGoogle Scholar
  34. 34.
    Tester RF, Morrison WR. Swelling and gelatinization of cereal starch I. Effects of amylopectin, amylose and lipids. J Cereal Chem. 1990;67:551–7.Google Scholar
  35. 35.
    Pérez Sira EE, Amaiz ML. A laboratory scale method for isolation of starch from pigmented sorghum. J Food Eng. 2004;64:515–9.CrossRefGoogle Scholar
  36. 36.
    Krishnakumar T, Sajeev MS. Effect of ultrasound treatment on physicochemical and functional properties of cassava starch. Int J Curr Microbiol Appl Sci. 2018;7(10):3122–35.CrossRefGoogle Scholar
  37. 37.
    Bernardo CO, Ascheri JLR, Chávez DWH, Carvalho CWP. Ultrasound assisted extraction of yam (Dioscorea bulbífera) starch: effect on morphology and functional properties. Starch. 2018;70(5–6):1700185.CrossRefGoogle Scholar
  38. 38.
    Liu X, Wang Y, Yu L, Tong Z, Chen L, Liu H, Li X. Thermal degradation and stability of starch under different processing conditions. Starch. 2012;65(1–2):48–60.Google Scholar
  39. 39.
    Soliman AA, EI-Shinnawy NA, Mobarak F. Thermal behaviour of starch and oxidized starch. Thermochim Acta. 1997;296:149–53.CrossRefGoogle Scholar
  40. 40.
    Liu X, Yu L, Xie F, Li M, Chen L, Li X. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch. 2010;62(3–4):139–46.CrossRefGoogle Scholar
  41. 41.
    Beninca C, Barboza RA, Oliveira CS, Bet CD, Bisinella RZB, Schnitzler E. Corn and Pinhão starches modified with sodium tripolyphosphate: thermal, pasting, structural and morphological properties. Starch. 2019;71(7–8):1800290.CrossRefGoogle Scholar
  42. 42.
    Oliveira CS, Andrade MMP, Colman TAD, Costa FJOG, Schnitzler E. Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. J Therm Anal Calorim. 2014;115:13–8.CrossRefGoogle Scholar
  43. 43.
    Cooke D, Gidley MJ. Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydr Res. 1992;227:103–12.CrossRefGoogle Scholar
  44. 44.
    Flores-Silva PC, Alvarez-Ramirez J, Bello-Perez LA. Effect of dual modification order with ultrasound and hydrothermal treatments on starch digestibility. Starch. 2018;70(5–6):1700284.CrossRefGoogle Scholar
  45. 45.
    Lorenz K, Kulp K. Cereal- and root starch modification by heat-moisture treatment. I. Physico-chemical properties. Starch. 1982;34:50–4.CrossRefGoogle Scholar
  46. 46.
    Agama-Acevedo E, Garcia-Suarez FJ, Gutierrez-Meraz F, Sanchez-Rivera MM, San Martin E, Bello-Pérez L. Isolation and partial characterization of Mexican taro (Colocasia esculenta L.) starch. Starch. 2011;63:139–46.CrossRefGoogle Scholar
  47. 47.
    Huang Q, Li L, Fu X. Ultrasound effects on the structure and chemical reactivity of cornstarch granules. Starch. 2007;59(8):371–8.CrossRefGoogle Scholar
  48. 48.
    Zheng J, Li Q, Hu A, Yang L, Lu J, Zhang X, Lin Q. Dual frequency ultrasound effect on structure and properties of sweet potato starch. Starch. 2013;65:621–7.CrossRefGoogle Scholar
  49. 49.
    Zhu J, Li L, Chen L, Li X. Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocoll. 2012;29:116–22.CrossRefGoogle Scholar
  50. 50.
    Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81:219–31.CrossRefGoogle Scholar
  51. 51.
    Rincón-Aguirre A, Pérez LBA, Mendoza S, del Real A, Garcia MER. Physicochemical studies of taro starch chemically modified by acetylation, phosphorylation, and succinylation. Starch. 2018;70:1–9.CrossRefGoogle Scholar
  52. 52.
    Perez E, Schultz FS, Delahaye EP. Characterization of some properties of starches isolated from Xanthosoma sagittifolium (tannia) and Colocasia esculenta (taro). Carbohydr Polym. 2005;60:139–45.CrossRefGoogle Scholar
  53. 53.
    Sujka M, Jamroz J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocoll. 2013;31:413–9.CrossRefGoogle Scholar
  54. 54.
    Zuo YYJ, Hebraud P, Hemar Y, Ashokkumar M. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrason Sonochem. 2012;19:421–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Zuo JY, Knoerzer K, Mawson R, Kentish S, Ashokkumar M. The pasting properties of sonicated waxy rice starch suspensions. Ultrason Sonochem. 2009;16:462–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Chan HT, Bhat R, Karim AA. Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chem. 2010;120:703–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  • Alana Martins
    • 1
  • Cleoci Beninca
    • 1
    • 2
  • Camila Delinski Bet
    • 1
  • Radla Zabian Bassetto Bisinella
    • 1
  • Cristina S. de Oliveira
    • 1
  • Polyanna Silveira Hornung
    • 3
  • Egon Schnitzler
    • 1
    Email author
  1. 1.State University of Ponta Grossa (UEPG)Ponta GrossaBrazil
  2. 2.Federal Institute of Education, Science and Technology of Santa Catarina (IFSC)CanoinhasBrazil
  3. 3.Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations