Advertisement

Catalytic co-pyrolysis of seaweeds and cellulose using mixed ZSM-5 and MCM-41 for enhanced crude bio-oil production

  • Yamin Hu
  • Haiwen Wang
  • Manogaran Lakshmikandan
  • Shuang WangEmail author
  • Qian WangEmail author
  • Zhixia He
  • Abd El-Fatah Abomohra
Article

Abstract

Catalytic co-pyrolysis of seaweed Enteromorpha clathrata (EN) and cellulose (CEL) with catalysts ZSM-5 and MCM-41 was investigated by TG, Py–GC/MS and fixed-bed experiments. The effects of temperature, catalysts, seaweed and cellulose ratio were examined on product yields distribution and bio-oil compositions by catalytic co-pyrolysis. The maximum bio-oil yield was recorded at the ratio of 1:1 (EN and CEL) with ZSM-5/MCM-41 at 500 °C on co-pyrolytic process. The interaction of radicals and faster heat transfer rate of EN/CEL induces the synergistic effects with catalysts. The advantage of mesoporous molecular sieve along with acidic microporous zeolite of ZSM-5/MCM-41 improved the cracking, dehydration, decarbonylation, decarboxylation, dealkylation, aromatization, oligomerization and deamination reactions. The overall study revealed that the amount of N-containing compounds were decreased and significantly elevated bio-oil production with increased furans and aromatics.

Keywords

Catalytic co-pyrolysis Seaweed Cellulose ZSM-5 MCM-41 Bio-oil 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51676091), China Postdoctoral Science Foundation (No. 2019T120408, 2019TQ0125) and the “333 Project” in Jiangsu Province (No. BRA2019277).

Supplementary material

10973_2020_9291_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (DOCX 58 kb)

References

  1. 1.
    Wang SR, Dai GX, Yang HP, Luo ZY. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust. 2017;62:33–86.CrossRefGoogle Scholar
  2. 2.
    Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol. 2013;130:321–31.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Raheem A, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Harun R. Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev. 2015;49:990–9.CrossRefGoogle Scholar
  4. 4.
    Chen DY, Li YJ, Cen KH, Luo M, Li HY, Lu B. Pyrolysis polygeneration of poplar wood: effect of heating rate and pyrolysis temperature. Bioresour Technol. 2016;218:780–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lu Q, Li WZ, Zhu XF. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag. 2009;50:1376–83.CrossRefGoogle Scholar
  6. 6.
    Wang S, Wang Q, Jiang XM, Han XX, Ji HS. Compositional analysis of bio-oil derived from pyrolysis of seaweed. Energy Convers Manag. 2013;68:273–80.CrossRefGoogle Scholar
  7. 7.
    Hu Y, Wang S, Wang Q, et al. Influence of torrefaction pretreatment on the pyrolysis characteristics of seaweed biomass. Cellulose. 2019;26(15):8475–87.CrossRefGoogle Scholar
  8. 8.
    Abnisa F, Daud WMAW. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag. 2014;87:71–85.CrossRefGoogle Scholar
  9. 9.
    Chen W, Chen YQ, Yang HP, et al. Co-pyrolysis of lignocellulosic biomass and microalgae: products characteristics and interaction effect. Bioresour Technol. 2017;245:860–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Uzoejinwa BB, He X, Wang S, et al. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Convers Manag. 2018;163:468–92.CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Yang X, Fu Z, et al. Synergistic effect of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08633-7.CrossRefGoogle Scholar
  12. 12.
    Wang S, Wang Q, Hu YM, et al. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique. J Anal Appl Pyrol. 2015;114:109–18.CrossRefGoogle Scholar
  13. 13.
    Cao B, Sun Y, Guo J, et al. Synergistic effects of co-pyrolysis of macroalgae and polyvinyl chloride on bio-oil/bio-char properties and transferring regularity of chlorine. Fuel. 2019;246:319–29.CrossRefGoogle Scholar
  14. 14.
    Uzoejinwa BB, He X, Wang S, et al. Co-pyrolysis of macroalgae and lignocellulosic biomass. J Therm Anal Calorim. 2019;136(5):2001–16.CrossRefGoogle Scholar
  15. 15.
    Hu Y, Wang S, Li J, et al. Co-pyrolysis and co-hydrothermal liquefaction of seaweeds and rice husk: comparative study towards enhanced biofuel production. J Anal Appl Pyrol. 2018;129:162–70.CrossRefGoogle Scholar
  16. 16.
    Zhang L, Liu R, Yin R, Mei Y. Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sust Energy Rev. 2013;24:66–72.CrossRefGoogle Scholar
  17. 17.
    Wang S, Cao B, Feng Y, et al. Co-pyrolysis and catalytic co-pyrolysis of Enteromorpha clathrata and rice husk. J Therm Anal Calorim. 2019;135(4):2613–23.CrossRefGoogle Scholar
  18. 18.
    Fan Y, Cai Y, Li X, et al. Coking characteristics and deactivation mechanism of the HZSM-5 zeolite employed in the upgrading of biomass-derived vapors. J Ind Eng Chem. 2017;46:139–49.CrossRefGoogle Scholar
  19. 19.
    Bao WR, Xue XL, Cao Q, Lu JJ, Lu YK. Study on biomass pyrolytic liquid products with MCM-41/SBA-15 as catalyst. J Fuel Chem Technol. 2006;34:675–9.Google Scholar
  20. 20.
    Sang Y, Liu HX, He SC, Li HS, Jiao QZ, Wu Q, Sun KN. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether. J Energy Chem. 2013;22:769–77.CrossRefGoogle Scholar
  21. 21.
    Ma W, Liu B, Ji X, Li X, Yan B, Cheng Z. Catalytic co-cracking of distilled bio-oil and ethanol over Ni-ZSM-5/MCM-41 in a fixed-bed. Biomass Bioenergy. 2017;102:31–6.CrossRefGoogle Scholar
  22. 22.
    Di ZX, Yang C, Jiao XJ, Li JQ, Wu JH, Zhang DK. A ZSM-5/MCM-48 based catalyst for methanol to gasoline conversion. Fuel. 2013;104:878–81.CrossRefGoogle Scholar
  23. 23.
    Wang J, Wang GC, Zhang MX, Chen MQ, Li DM, et al. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochem. 2006;41:1883–6.CrossRefGoogle Scholar
  24. 24.
    Zhao CH, Zhang XP, Shi L. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR. Waste Manag. 2017;61:354–61.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Liu GY, Wright MM, Zhao QL, Brown RC, Wang KG, Xue Y. Catalytic pyrolysis of amino acids: comparison of aliphatic amino acid and cyclic amino acid. Energy Convers Manag. 2016;112:220–5.CrossRefGoogle Scholar
  26. 26.
    Gopakumar ST, Adhikari S, Chattanathan SA, et al. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour Technol. 2012;118:150–7.CrossRefGoogle Scholar
  27. 27.
    Gayubo AG, Aguayo AT, Atutxa A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a ZSM-5 zeolite. I. Alcohols and phenols. Ind Eng Chem Res. 2004;43:2610–8.CrossRefGoogle Scholar
  28. 28.
    Maher KD, Bressler DC. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol. 2007;98:2351–68.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Du ZY, Hu B, Ma XC, et al. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids. Bioresour Technol. 2013;130:777–82.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wang KG, Kim KH, Brown RC. Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 2014;16:727–35.CrossRefGoogle Scholar
  31. 31.
    Du ZY, Ma XC, Li Y, et al. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe. Bioresour Technol. 2013;139:397–401.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Adjaye JD, Bakhshi NN. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: conversion over various catalysts. Fuel Process Technol. 1995;45:161–83.CrossRefGoogle Scholar
  33. 33.
    Wang K, Brown RC. Catalytic pyrolysis of corn dried distillers grains with solubles to produce hydrocarbons. ACS Sustain Chem Eng. 2014;2:2142–8.CrossRefGoogle Scholar
  34. 34.
    Bradbury AG, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose. J Appl Polym Sci. 1979;23(11):3271–80.CrossRefGoogle Scholar
  35. 35.
    Dickerson T, Soria J. Catalytic fast pyrolysis: a review. Energies. 2013;6(1):514–38.CrossRefGoogle Scholar
  36. 36.
    Lorenzetti C, Roberto C, Daniele F, et al. A comparative study on the catalytic effect of H-ZSM5 on upgrading of pyrolysis vapors derived from lignocellulosic and proteinaceous biomass. Fuel. 2016;166:446–52.CrossRefGoogle Scholar
  37. 37.
    Fan LL, Chen P, Zhang YN, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresour Technol. 2017;225:199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhang X, Zhang S, Yang H, Shi T, Chen Y, Chen H. Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Res. 2013;6:1147–53.CrossRefGoogle Scholar
  39. 39.
    Xie QL, Peng P, Liu SY, Min M, Cheng YL, Wan YQ. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresour Technol. 2014;172:162–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dong Q, Zhang S, Zhang L, Ding K, Xiong Y. Effects of four types of dilute acid washing on moso bamboo pyrolysis using Py–GC/MS. Bioresour Technol. 2015;185:62–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Xin S, Yang H, Chen Y, Wang X, Chen H. Assessment of pyrolysis polygeneration of biomass based on major components: product characterization and elucidation of degradation pathways. Fuel. 2013;113:266–73.CrossRefGoogle Scholar
  42. 42.
    Cheng YT, George WH. Chemistry of furan conversion into aromatics and olefins over ZSM-5: a model biomass conversion reaction. ACS Catal. 2011;1:611–28.CrossRefGoogle Scholar
  43. 43.
    Vollhardt KPC, Schore NE. Organic chemistry: structure and function. 5th ed. New York: Freeman WH; 2005.Google Scholar
  44. 44.
    Joshua KK, Lavrent K, Barry D. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components. Chemosphere. 2015;138:259–65.CrossRefGoogle Scholar
  45. 45.
    Xiao R, Zhang HY, Shen DK. Selective pyrolysis of biomass to liquid fuels and chemicals. Beijing: Science Press; 2015. p. 46.Google Scholar
  46. 46.
    Serrano VG, Villegas JP, Florindo AP, Valle CD, Calahorro CV. FT-IR study of rockrose and of char and activated carbon. J Anal Appl Pyrol. 1996;36:71–80.CrossRefGoogle Scholar
  47. 47.
    Meesuk S, Cao JP, Sato K, Ogawa Y, Takarada T. The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst. J Anal Appl Pyrol. 2012;94:238–45.CrossRefGoogle Scholar
  48. 48.
    Ponder GR, Richards GN. Thermal synthesis and pyrolysis of xylan. Carbohydr Res. 1991;218:143–55.CrossRefGoogle Scholar
  49. 49.
    Wang S, Xia Z, Hu YM, et al. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations. Bioresour Technol. 2017;228:305–14.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  • Yamin Hu
    • 1
  • Haiwen Wang
    • 1
  • Manogaran Lakshmikandan
    • 1
  • Shuang Wang
    • 1
    Email author
  • Qian Wang
    • 1
    Email author
  • Zhixia He
    • 1
    • 2
  • Abd El-Fatah Abomohra
    • 1
    • 3
  1. 1.School of Energy and Power EngineeringJiangsu UniversityJiangsuChina
  2. 2.Institute for Energy ResearchJiangsu UniversityJiangsuChina
  3. 3.Botany Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations