Thermochemical conversion of coconut waste: material characterization and identification of pyrolysis products

  • Lidja Dahiane Menezes Santos Borel
  • Taísa Shimosakai de Lira
  • Carlos Henrique Ataíde
  • Marcos Antonio de Souza BarrozoEmail author


In this work, coconut waste was evaluated for its potential for biofuel production via pyrolysis by considering physicochemical properties, kinetics of thermal degradation, and chemical composition of products generated. The kinetic of pyrolysis was investigated based on data obtained in a thermogravimetric analyzer at various heating rates. The independent parallel reactions model was used to describe the decomposition process. The activation energy (Ea) values estimated for extractives, hemicellulose, cellulose, and lignin were 194.7–197.7, 122.8–128.6, 244.1–250.5, and 53.0–64.0 kJ mol−1, respectively. The composition of the pyrolytic vapors was investigated via Py-GC/MS at different temperatures in an inert helium atmosphere. The results show that products of pyrolysis of the coconut waste can be a source of valuable chemicals, such as phenol, 1-hydroxy-2-propanone, furfural, and acetic acid. The increase of the reaction temperature resulted in the formation of hydrocarbons and in an increase in the number of aldehydes and ketones.


Coconut waste Thermogravimetric analysis Kinetics parameters Analytical pyrolysis 



The authors acknowledge the Brazilian institutions CAPES (Federal Agency for the Support and Improvement of Higher Education), CNPq (National Council for Scientific and Technological Development), and FAPEMIG (Minas Gerais State Research Foundation) for supporting this research.


  1. 1.
    Shen D, Jin W, Hu J, Xiao R, Luo K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sustain Energy Rev. 2015;51:761–74.CrossRefGoogle Scholar
  2. 2.
    Mangut V, Sabio E, Gañán J, González JF, Ramiro A, González CM, et al. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process Technol. 2006;87:109–15.CrossRefGoogle Scholar
  3. 3.
    Santos KG, Lobato FS, Lira TS, Murata VV, Barrozo MAS. Sensitivity analysis applied to independent parallel reaction model for pyrolysis of bagasse. Chem Eng Res Des. 2012;90:1989–96.CrossRefGoogle Scholar
  4. 4.
    Oliveira TJP, Cardoso CR, Ataíde CH. Fast pyrolysis of soybean hulls: analysis of bio-oil produced in a fluidized bed reactor and of vapor obtained in analytical pyrolysis. J Therm Anal Calorim. 2015;120:427–38.CrossRefGoogle Scholar
  5. 5.
    Carvalho WS, Oliveira TJ, Cardoso CR, Ataíde CH. Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum. Chem Eng Res Des. 2015;95:337–45.CrossRefGoogle Scholar
  6. 6.
    Strezov V, Moghtaderi B, Lucas JA. Thermal study of decomposition of selected biomass samples. J Therm Anal Calorim. 2003;72:1041–8.CrossRefGoogle Scholar
  7. 7.
    Chen D-Y, Zhang D, Zhu X-F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J Therm Anal Calorim. 2012;109:847–54.CrossRefGoogle Scholar
  8. 8.
    Sandström L, Johansson A-C, Wiinikka H, Öhrman OGW, Marklund M. Pyrolysis of Nordic biomass types in a cyclone pilot plant—mass balances and yields. Fuel Process Technol. 2016;152:274–84.CrossRefGoogle Scholar
  9. 9.
    Misse SE, Brillard A, Brilhac J-F, Obonou M, Ayina LM, Schönnenbeck C, et al. Thermogravimetric analyses and kinetic modeling of three Cameroonian biomass. J Therm Anal Calorim. 2018;132:1979–94.CrossRefGoogle Scholar
  10. 10.
    Coconut–Tree of Life [Internet]. [cited 2019 Nov 4]. Accessed 4 Nov 2019.
  11. 11.
    Acda MN. Fuel pellets from downed coconut (Cocos nucifera) in super typhoon Haiyan. Biomass Bioenerg. 2015;83:539–42.CrossRefGoogle Scholar
  12. 12.
    Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H. Development of coconut pith chars towards high elemental mercury adsorption performance—effect of pyrolysis temperatures. Chemosphere. 2016;156:56–68.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Doumer ME, Arízaga GGC, da Silva DA, Yamamoto CI, Novotny EH, Santos JM, et al. Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J Anal Appl Pyrol. 2015;113:434–43.CrossRefGoogle Scholar
  14. 14.
    Liyanage CD, Pieris M. A Physico-Chemical Analysis of Coconut Shell Powder. Procedia Chemistry. 2015;16:222–8.CrossRefGoogle Scholar
  15. 15.
    Sequeiros A, Labidi J. Characterization and determination of the S/G ratio via Py-GC/MS of agricultural and industrial residues. Ind Crops Prod. 2017;97:469–76.CrossRefGoogle Scholar
  16. 16.
    Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B. Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J Therm Anal Calorim. 2017;129:1201–13.CrossRefGoogle Scholar
  17. 17.
    Li C, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim. 2009;98:261–6.CrossRefGoogle Scholar
  18. 18.
    Granada E, Eguía P, Comesaña JA, Patiño D, Porteiro J, Miguez JL. Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels. J Therm Anal Calorim. 2013;113:569–78.CrossRefGoogle Scholar
  19. 19.
    Xavier TP, Lira TS, Schettino MA Jr, Barrozo MAS. A study of pyrolysis of macadamia nut shell: parametric sensitivity analysis of the IPR model. Braz J Chem Eng. 2016;33:115–22.CrossRefGoogle Scholar
  20. 20.
    Lira TS, Santos KG, Murata VV, Gianesella M, Barrozo MAS. The use of nonlinearity measures in the estimation of kinetic parameters of sugarcane bagasse pyrolysis. Chem Eng Technol. 2010;33:1699–705.CrossRefGoogle Scholar
  21. 21.
    Basu P. Biomass gasification and pyrolysis: practical design and theory. Amsterdam: Elsevier; 2010.Google Scholar
  22. 22.
    Morais JPS. Procedures for Lignocellulosic Analysis. Embrapa Tropical Agroindustry Documents, 236). 2011; Fortaleza: Embrapa Tropical Agroindustry 54 p; 2011. (In Portuguese).Google Scholar
  23. 23.
    Morgan TJ, George A, Boulamanti AK, Álvarez P, Adanouj I, Dean C, et al. Quantitative X-ray fluorescence analysis of biomass (switchgrass, corn stover, eucalyptus, beech, and pine wood) with a typical commercial multi-element method on a WD-XRF spectrometer. Energy Fuels. 2015;29:1669–85.CrossRefGoogle Scholar
  24. 24.
    Manyà JJ, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res. 2003;42:434–41.CrossRefGoogle Scholar
  25. 25.
    Gómez CJ, Manyà JJ, Velo E, Puigjaner L. Further applications of a revisited summative model for kinetics of biomass pyrolysis. Ind Eng Chem Res. 2004;43:901–6.CrossRefGoogle Scholar
  26. 26.
    Lobato FS, Steffen V, Arruda EB, Barrozo MAS. Estimation of drying parameters in rotary dryers using differential evolution. J Phys Conf Ser. 2008;135:012063.CrossRefGoogle Scholar
  27. 27.
    Barrozo MAS, Murata VV, Costa SM. The drying of soybean seeds in countercurrent and concurrent moving bed dryers. Dry Technol. 1998;16:2033–47.CrossRefGoogle Scholar
  28. 28.
    Barrozo MAS, Sanori DJM, Freire JT, Achcar JA. Discrimination of equilibrium moisture equations for soybean usmg nonlinearity measure. Dry Technol. 1996;14:1779–94.CrossRefGoogle Scholar
  29. 29.
    Rambo MKD, Schmidt FL, Ferreira MMC. Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta. 2015;144:696–703.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kelkar S, Li Z, Bovee J, Thelen KD, Kriegel RM, Saffron CM. Pyrolysis of North-American grass species: effect of feedstock composition and taxonomy on pyrolysis products. Biomass Bioenerg. 2014;64:152–61.CrossRefGoogle Scholar
  31. 31.
    Phichai K, Pragrobpondee P, Khumpart T, Hirunpraditkoon S. Prediction heating values of lignocellulosics from biomass characteristics. Int J Chem Mol Nuclear Mater Metall Eng. 2013;7:4.Google Scholar
  32. 32.
    Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol. 2006;76:230–7.CrossRefGoogle Scholar
  33. 33.
    Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel. 2014;128:162–9.CrossRefGoogle Scholar
  34. 34.
    Yin C-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 2011;90:1128–32.CrossRefGoogle Scholar
  35. 35.
    Shan HZ, Zhuo SJ, Shen RX, Sheng C. Mineralogical effect correction in wavelength dispersive X-ray florescence analysis of pressed powder pellets. Spectrochim Acta Part B. 2008;63:612–6.CrossRefGoogle Scholar
  36. 36.
    Kovacs H, Szemmelveisz K, Koós T. Theoretical and experimental metals flow calculations during biomass combustion. Fuel. 2016;185:524–31.CrossRefGoogle Scholar
  37. 37.
    Tan Z, Lagerkvist A. Phosphorus recovery from the biomass ash: a review. Renew Sustain Energy Rev. 2011;15:3588–602.CrossRefGoogle Scholar
  38. 38.
    Clery DS, Mason PE, Rayner CM, Jones JM. The effects of an additive on the release of potassium in biomass combustion. Fuel. 2018;214:647–55.CrossRefGoogle Scholar
  39. 39.
    Shafizadeh F, DeGroot WF. Combustion Characteristics of Cellulosic Fuels. Thermal Uses and Properties of Carbohydrates and Lignins [Internet]. Elsevier; 1976 [cited 2019 Nov 5]. pp. 1–17. Accessed 5 Nov 2019.
  40. 40.
    Wu D, Wang Y, Wang Y, Li S, Wei X. Release of alkali metals during co-firing biomass and coal. Renew Energy. 2016;96:91–7.CrossRefGoogle Scholar
  41. 41.
    Zhou L, Jia Y, Nguyen T-H, Adesina AA, Liu Z. Hydropyrolysis characteristics and kinetics of potassium-impregnated pine wood. Fuel Process Technol. 2013;116:149–57.CrossRefGoogle Scholar
  42. 42.
    Popescu C-M, Popescu M-C, Singurel G, Vasile C, Argyropoulos DS, Willfor S. Spectral characterization of eucalyptus wood. Appl Spectrosc. 2007;61:1168–77.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jose S, Mishra L, Basu G, Kumarsamanta A. Study on reuse of coconut fiber chemical retting bath. Part II—recovery and characterization of Lignin. J Nat Fibers. 2017;14:1–9.CrossRefGoogle Scholar
  44. 44.
    Chen Z, Hu M, Zhu X, Guo D, Liu S, Hu Z, et al. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Biores Technol. 2015;192:441–50.CrossRefGoogle Scholar
  45. 45.
    Andrade LA, Barrozo MAS, Vieira LGM. Thermo-chemical behavior and product formation during pyrolysis of mango seed shell. Ind Crops Prod. 2016;85:174–80.CrossRefGoogle Scholar
  46. 46.
    Akalın MK, Karagöz S. Analytical pyrolysis of biomass using gas chromatography coupled to mass spectrometry. TrAC Trends Anal Chem. 2014;61:11–6.CrossRefGoogle Scholar
  47. 47.
    Said M, John G, Mhilu C, Manyele S. The study of kinetic properties and analytical pyrolysis of coconut shells. J Renew Energy. 2015;2015:1–8.CrossRefGoogle Scholar
  48. 48.
    Lu Q, Wang Z, Dong C, Zhang Z, Zhang Y, Yang Y, et al. Selective fast pyrolysis of biomass impregnated with ZnCl2: furfural production together with acetic acid and activated carbon as by-products. J Anal Appl Pyrol. 2011;91:273–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.Department of EngineeringFederal University of LavrasLavrasBrazil
  2. 2.Department of Engineering and ComputingFederal University of Espírito SantoSão MateusBrazil
  3. 3.School of Chemical EngineeringFederal University of UberlândiaUberlândiaBrazil

Personalised recommendations