Advertisement

The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances

  • 36 Accesses

Abstract

The time of safety valve cracks and thermal runaway propagation are influenced seriously by vertical distance and the stage of charge (SOC). In this study, a series of experiments with four lithium-ion batteries has been finished to evaluate the fire hazards by in situ calorimeter. The temperature of safety valve crack is inversely proportional to the SOC. For upper batteries of 0, 50 and 100% SOC, the safety valve was not cracked at 3, 5 and 8 cm, respectively. The safety valve crack time is an exponential function of distance for 50% and 100% SOC. The SO2 can be obviously found under a high temperature for the fully charged batteries.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Balakrishnan PG, Ramesh R, Kumar TP. Safety mechanisms in lithium-ion batteries. J Power Sources. 2006;155(2):401–14.

  2. 2.

    Ritchie A, Howard W. Recent developments and likely advances in lithium-ion batteries. J Power Sources. 2006;162(2):809–12.

  3. 3.

    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group; 2011. pp. 171-179.

  4. 4.

    Chen MY, He YP, Zhou CD, Yuen R, Wang J. Experimental study on the combustion characteristics of primary lithium batteries fire. Fire Technol. 2016;52(2):365–85.

  5. 5.

    Tao CF, Ye QP, Wang CM, Qian YJ, Wang CF, Zhou TT, Tang ZG. An experimental investigation on the burning behaviors of lithium ion batteries after different immersion times. J Clean Prod. 2020;242:118539.

  6. 6.

    Huang PF, Ping P, Li K, Chen HD, Wang QS, Wen J, Sun JH. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy. 2016;183:659–73.

  7. 7.

    Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2013;113(1):81–100.

  8. 8.

    Aurbach D, Teller H, Koltypin M, Levi E. On the behavior of different types of graphite anodes. J Power Sources. 2003;119:2–7.

  9. 9.

    Liu Y, Mi CH, Yuan CZ, Zhang XG. Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2. J Electroanal Chem. 2009;628(1–2):73–80.

  10. 10.

    Duh YS, Kao CS, Ou WJ, Hsu JM. Thermal instabilities of organic carbonates with charged cathode materials in lithium-ion batteries. J Therm Anal Calorim. 2014;116(3):1105–10.

  11. 11.

    Wen CY, Jhu CY, Wang YW, Chiang CC, Shu CM. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J Therm Anal Calorim. 2012;109(3):1297–302.

  12. 12.

    Selman JR, Hallaj SA, Uchida I, Hirano Y. Cooperative research on safety fundamentals of lithium batteries. J Power Sources. 2001;97:726–32.

  13. 13.

    Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf Environ. 2011;89(6):434–42.

  14. 14.

    Chen MY, Zhou DC, Chen X, Zhang WX, Liu JH, Yuen R, Wang J. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63.

  15. 15.

    Farrington MD. Safety of lithium batteries in transportation. J Power Sources. 2001;96(1):260–5.

  16. 16.

    Ye J, Chen HD, Wang QS, Huang PF, Sun JH, Lo SM. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Appl Energy. 2016;182:464–74.

  17. 17.

    Lu TY, Chiang CC, Wu SH, Chen KC, Lin SJ, Wen CY, Shu CM. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J Therm Anal Calorim. 2013;114(3):1083–8.

  18. 18.

    Wang QS, Ping P, Zhao XJ, Chu GQ, Sun JH, Chen CH. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24.

  19. 19.

    Weng J, Ouyang DX, Yang XQ, Chen MY, Zhang GQ, Wang J. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers Manag. 2019;200:112071.

  20. 20.

    Chen MY, Ouyang DX, Liu JH, Wang J. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package. Appl Therm Eng. 2019;157:113750.

  21. 21.

    Feng XN, Sun J, Ouyang MG, Wang F, He XM, Lu LG, Peng HE. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources. 2015;275:261–73.

  22. 22.

    Yan JJ, Li K, Chen HD, Wang QS, Sun JH. Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Convers Manag. 2016;128:12–9.

  23. 23.

    Zhang CP, Jiang Y, Jiang JC, Cheng G, Diao WP, Zhang WG. Study on battery pack consistency evolutions and equilibrium diagnosis for serial-connected lithium-ion batteries. Appl Energy. 2017;207:510–9.

  24. 24.

    Sun QJ, Wang QS, Zhao XJ, Sun JH, Lin ZJ. Numerical study on lithium titanate battery thermal response under adiabatic condition. Energy Convers Manag. 2015;92:184–93.

  25. 25.

    ISO 5660:1-2002 Reaction-to-fire tests—heat release, smoke production and mass loss rate—Part 1: heat release rate (cone calorimeter method).

  26. 26.

    Parker WJ. Calculations of the heat release rate by oxygen consumption for various applications. J Fire Sci. 1984;2(5):380–95.

  27. 27.

    Redfern JP. Rate of heat release measurement using the cone calorimeter. J Therm Anal. 1989;35(6):1861–77.

  28. 28.

    Liu JH, Chen MY, Lin X, Yuen R, Wang J. Impacts of ceiling height on the combustion behaviors of pool fires beneath a ceiling. J Therm Anal Calorim. 2016;126(2):881–9.

  29. 29.

    Li HH, He YP, Wang J. Determination of smoke point of laminar acetylene diffusion flames under sub-atmospheric pressures. Combust Sci Technol. 2014;186(9):1237–48.

  30. 30.

    Larsson F, Andersson P, Blomqvist P, Mellander BE. Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep UK. 2017;7:10018.

  31. 31.

    Peng Y, Yang LZ, Ju XY, Liao BS, Ye K, Li L, Cao B, Ni Y. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater. 2020;381:120916.

  32. 32.

    Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Dai HJ. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644–7.

  33. 33.

    Babrauskas V. Pillow burning rates. Fire Saf J. 1985;8(3):199.

  34. 34.

    Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci. 2012;5(1):5271–80.

  35. 35.

    Liebenow C, Wagner MW, Lühder K, Lobitz P, Besenhard JO. Electrochemical behavior of coated lithium-carbon electrodes. J Power Sources. 1995;54(2):369–72.

  36. 36.

    Wrodnigg GH, Besenhard JO, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J Electrochem Soc. 1999;146(2):470–2.

  37. 37.

    Wrodnigg GH, Besenhard JO, Winter M. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes. J Power Sources. 2001;97:592–4.

  38. 38.

    Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5.

  39. 39.

    Brohez S, Delvosalle C, Marlair G. The measurement of heat release from oxygen consumption in sooty fires. J Fire Sci. 2000;18(5):327–53.

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (No. 2018YFC0810600), the National Natural Science Foundation of China (Nos. U1933131 and 51676062), and China Postdoctoral Science Foundation (No. 2018M640582).

Author information

Correspondence to Xiaoping Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Li, G., Zhao, J. et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09274-x

Download citation

Keywords

  • Safety valve crack
  • Thermal runaway propagation
  • Lithium-ion batteries
  • Vertical distances