Advertisement

Thermal, morphostructural and spectrometric characterization of an antibacterial kaolinite-based filter modified with silver for water treatment

  • Filipe Corrêa Guizellini
  • Bruno Trevizan Franzin
  • Matheus Antonio da Silva
  • Luciana Mazotti Abra
  • Ossamu Hojo
  • Iêda Aparecida Pastre
  • Clóvis Augusto Ribeiro
  • Carlos de Oliveira Paiva-Santos
  • Fernando Luis FertonaniEmail author
Article
  • 20 Downloads

Abstract

The aim of this work is to synthesize and characterize a new structured silver–clay dried, calcined or sintered at different temperatures composite by TG–DTA analysis, FTIR spectrometry analysis, XRD and Rietveld refinement, WD-XRF spectrometry, FEG–SEM images and EDS chemical analysis and to evaluate the antibacterial capacity of the new composite by the diffusion disk test against E. coli strains to attend water potability parameters. TG–DTA curves of Bco_dried suggested the presence of kaolinite, muscovite and hydrotalcite by the different events of structural water loss at different atmospheres. The interaction of Ag–clay might have occurred with hydrotalcite as can be inferred by the disappearance of the event at 408.9 °C (N2) and 433.4 °C (air). FTIR spectra showed that the modification occurred because of the changes that can be observed in the band range of (750 ≤ ν ≤ 1350) cm−1 for inner –OH and Si–O bonds. The Bco_dried composition was quantified by XRD and Rietveld refinement, and crystalline phases are quartz, calcite, kaolinite, hydrotalcite, muscovite, and portlandite. After sintering, the material presented the formation of new crystalline phases, due to the loss of structural water. When modified, the sample had no characteristic peaks of hydrotalcite, suggesting an interaction with Ag species. The compositions estimated for all samples by WD-XRF are mostly of Si, Al, Ca, K, Mg, Fe, Ti, and Ag. After modification, Ag increased significantly for Pca4_dried and Pca4_sint. SEM images presented the hexagonal characteristic of layered clay material and showed the interaction with Ag added. The susceptibility test showed that Pca4_dried has an antibacterial capacity against E. coli JM107 strains.

Keywords

TG–DTA XRD FTIR WD-XRF FEG–SEM images Antibacterial clay filter for water treatment 

Notes

Acknowledgements

This work was supported by Cerâmica Stéfani and SPR Consultoria Metrológica. We would like to thank the LabCACC (São Paulo State University, Araraquara) for XRD facilities, GAIA (São Carlos Federal University, São Carlos) for WD-XRF facilities, Laboratório de Sucroquímica e Química Ambiental (LSQA) (São Paulo State University, São José do Rio Preto-SP) for ATR-FTIR facilities and the LMA-IQ for FEG–SEM facilities.

Supplementary material

10973_2020_9267_MOESM1_ESM.tif (15 mb)
Supplementary material 1 (TIFF 15329 kb)
10973_2020_9267_MOESM2_ESM.tif (15 mb)
Supplementary material 2 (TIFF 15329 kb)
10973_2020_9267_MOESM3_ESM.tif (15 mb)
Supplementary material 3 (TIFF 15329 kb)
10973_2020_9267_MOESM4_ESM.tif (15 mb)
Supplementary material 4 (TIFF 15329 kb)
10973_2020_9267_MOESM5_ESM.tif (15 mb)
Supplementary material 5 (TIFF 15329 kb)
10973_2020_9267_MOESM6_ESM.tif (15 mb)
Supplementary material 6 (TIFF 15329 kb)
10973_2020_9267_MOESM7_ESM.tif (15 mb)
Supplementary material 7 (TIFF 15329 kb)
10973_2020_9267_MOESM8_ESM.tif (876 kb)
Supplementary material 8 (TIFF 875 kb)
10973_2020_9267_MOESM9_ESM.tif (12.1 mb)
Supplementary material 9 (TIFF 12374 kb)
10973_2020_9267_MOESM10_ESM.docx (49 kb)
Supplementary material 10 (DOCX 48 kb)

References

  1. 1.
    Prüss-Ustün A, Bartram J, Clasen T, Colford JM, Cumming O, Curtis V, et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Trop Med Int Health. 2014;19:894–905.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bergaya F, Lagaly G. Surface modification of clay minerals. Appl Clay Sci. 2001;19:1–3.CrossRefGoogle Scholar
  3. 3.
    Jiang JQ, Ashekuzzaman SM. Development of novel inorganic adsorbent for water treatment. Curr Opin Chem Eng [Internet]. 2012;1:191–9.  https://doi.org/10.1016/j.coche.2012.03.008.CrossRefGoogle Scholar
  4. 4.
    Bailey SE, Olin TJ, Mark Bricka R, Dean Adrian D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999;33:2469–79.CrossRefGoogle Scholar
  5. 5.
    Lagaly G. Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Appl Clay Sci. 1996;11:87–8.CrossRefGoogle Scholar
  6. 6.
    Murray HH. Overview—clay mineral applications. Appl Clay Sci. 1991;5:379–95.CrossRefGoogle Scholar
  7. 7.
    Horváth E, Kristóf J, Frost RL. Vibrational spectroscopy of intercalated kaolinites. Part I. Appl Spectrosc Rev. 2010;45:130–47.CrossRefGoogle Scholar
  8. 8.
    Zsirka B, Horváth E, Járvás Z, Dallos A, Makó É, Kristóf J. Structural and energetical characterization of exfoliated kaolinite surfaces. Appl Clay Sci [Internet]. 2016;124–125:54–61.  https://doi.org/10.1016/j.clay.2016.01.035.CrossRefGoogle Scholar
  9. 9.
    Bergaya F, Lagaly G. Chapter 1 general introduction: clays, clay minerals, and clay science. Dev Clay Sci. 2006;1:1–18.Google Scholar
  10. 10.
    Grim RE. Applied clay mineralogy. New York: McGraw-Hill; 1962.CrossRefGoogle Scholar
  11. 11.
    Albers APF, Melchiades FG, Machado R, Baldo JB, Boschi AO. Um método simples de caracterização de argilominerais por difração de raios X. Cerâmica. 2002;48:34–7.CrossRefGoogle Scholar
  12. 12.
    Menezes RR, Souto PM, Santana LNL, Neves GA, Kiminami RHGA, Ferreira HC. Argilas bentoníticas de Cubati, Paraíba, Brasil: Caracterização física-mineralógica. Cerâmica. 2009;55:163–9.CrossRefGoogle Scholar
  13. 13.
    Tombacz E, Szekeres M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl Clay Sci. 2004;27:75–94.CrossRefGoogle Scholar
  14. 14.
    Fernandes MVS, Silva LRDda. Síntese e caracterização de vermiculita mesoporosa obtida por modificação com sais complexos de alumínio e lantânio. Cerâmica [Internet]. 2014;60:205–10.CrossRefGoogle Scholar
  15. 15.
    Franzin BT, Lupi CP, Martins LA, Guizellini FC, dos Santos CCM, Pastre IA, et al. Thermal and electrochemical studies of Fe(III) organophilic montmorillonite. J Therm Anal Calorim. 2018;131:713–23.CrossRefGoogle Scholar
  16. 16.
    Lupi CP, Franzin BT, Pereira PR, Damaceno AJ, Dadamos TRD, dos Santos CCM, et al. Thermal and electrochemical studies of Cu(II) 8-hydroxyquinoline organophilic montmorillonite. J Therm Anal Calorim. 2018;131:799–810.CrossRefGoogle Scholar
  17. 17.
    Pastre IA, Oliveria ID, Moitinho ABS, de Souza GR, Ionashiro EY, Fertonani FL. Thermal behaviour of intercalated 8-hydroxyquinoline (oxine) in montmorillonite clay. J Therm Anal Calorim. 2004;75:661–9.CrossRefGoogle Scholar
  18. 18.
    Farhanian S, Hatami M. Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites. J Therm Anal Calorim. 2017;130:2069–78.CrossRefGoogle Scholar
  19. 19.
    Hashemian S, Reza Shahedi M. Novel Ag/kaolin nanocomposite as adsorbent for removal of acid cyanine 5R from aqueous solution. J Chem. 2013;2013:1–7.Google Scholar
  20. 20.
    Sadasivam S, Rao SM. Characterization of silver–kaolinite (AgK): an adsorbent for long-lived 129I species. SpringerPlus. 2016;5:142.  https://doi.org/10.1186/s40064-016-1855-8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Valaskova M, Hundakova M, Mamulova Kutlakova K, Seidlerova J, Capkova P, Pazdziora E, et al. Preparation and characterization of antibacterial silver/vermiculites and silver/montmorillonites. Geochim Cosmochim Acta. 2010;74:6287–300.CrossRefGoogle Scholar
  22. 22.
    Karel FB, Koparal AS, Kaynak E. Development of silver ion doped antibacterial clays and investigation of their antibacterial activity. Adv Mater Sci Eng. 2015.  https://doi.org/10.1155/2015/409078.CrossRefGoogle Scholar
  23. 23.
    Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C, Cortes MA, et al. Antibacterial activity of montmorillonites modified with silver. J Mol Catal A Chem. 2008;281:192–9.CrossRefGoogle Scholar
  24. 24.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101.CrossRefGoogle Scholar
  25. 25.
    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85:1115–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Ajayan PM. Bulk Metal and Ceramics Nanocomposites. In: Ajayan PM, Schadler LS, Braun PV, editors. Nanocomposites Science and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2003. pp. 1–75.CrossRefGoogle Scholar
  28. 28.
    Liu J, Lee JB, Kim DH, Kim Y. Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Coll Surf A Physicochem Eng Asp. 2007;302:276–9.CrossRefGoogle Scholar
  29. 29.
    Zhang X, Yang CW, Yu HQ, Sheng GP. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Res. 2016;106:242–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Babos DV, Costa VC, Speranca MA, Pereira ER. Direct determination of calcium and phosphorus in mineral supplements for cattle by wavelength dispersive X-ray fluorescence (WD-XRF). Microchem J. 2018;137:272–6.CrossRefGoogle Scholar
  31. 31.
    Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests. 12th edn. Pennsylvania: CLSI; 2015.Google Scholar
  32. 32.
    American Society for Testing and Materials (ASTM). ASTM C114-18: Standard Test Methods for Chemical Analysis of Hydraulic Cement. Pennsylvania: ASTM International. 2018.  https://doi.org/10.1520/C0114-18.
  33. 33.
    Vagvolgyi V, Palmer SJ, Kristof J, Frost RL, Horvath E. Mechanism for hydrotalcite decomposition: a controlled rate thermal analysis study. J Coll Interface Sci. 2008;318:302–8.CrossRefGoogle Scholar
  34. 34.
    Gaines GL, Vedder W. Dehydroxylation of muscovite. Nature [Internet]. 1964;201:495.  https://doi.org/10.1038/201495a0.CrossRefGoogle Scholar
  35. 35.
    Bayliss P, Warne SSJ. Differential thermal analysis of siderite–kaolinite mixtures. Am Mineral. 1972;57:960–6.Google Scholar
  36. 36.
    Rowland RA. Differential thermal analysis of clays and carbonates. Clays Clay Miner [Internet]. 1952;1:151–63.  https://doi.org/10.1346/CCMN.1952.0010118.CrossRefGoogle Scholar
  37. 37.
    Zhang J, Xu YF, Qian GG, Xu ZP, Chen C, Liu Q. Reinvestigation of dehydration and dehydroxylation of hydrotalcite-like compounds through combined TG–DTA–MS analyses. J Phys Chem C. 2010;114:10768–74.CrossRefGoogle Scholar
  38. 38.
    Chiu Y, Rambabu U, Hsu MH, Shieh HPD, Chen CY, Lin HH. Fabrication and nonlinear optical properties of nanoparticle silver oxide films. J Appl Phys. 2003;94:1996–2001.CrossRefGoogle Scholar
  39. 39.
    Paulik F, Paulik J, Arnold M. Examination of the decomposition of agno3 by means of simultaneous ega and tg method under conventional and quasi isothermal circumstances. Thermochim Acta. 1985;92:787–90.CrossRefGoogle Scholar
  40. 40.
    Waterhouse GIN, Bowmaker GA, Metson JB. The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and Raman spectroscopic study. Phys Chem Chem Phys. 2001;3:3838–45.CrossRefGoogle Scholar
  41. 41.
    Otto K, Acik IO, Krunks M, Tonsuaadu K, Mere A. Thermal decomposition study of HAuCl4 center dot 3H(2)O and AgNO3 as precursors for plasmonic metal nanoparticles. J Therm Anal Calorim. 2014;118:1065–72.CrossRefGoogle Scholar
  42. 42.
    Negishi A, Ozawa T. The effect of grinding on DTA curves of silver nitrate. Thermochim Acta [Internet]. 1971;2:89–91.CrossRefGoogle Scholar
  43. 43.
    Charlot G. Les réactions chimiques en solution: l’analyse qualitative minérale. 6th ed. Paris: Masson et Cie; 1969.Google Scholar
  44. 44.
    Obadiah A, Kannan R, Ravichandran P, Ramasubbu A, Kumar SV. Nano hydrotalcite as a novel catalyst for biodiesel conversion. Dig J Nanomater Biostruct. 2012;7:321–7.Google Scholar
  45. 45.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Hoboken: Wiley; 1977.Google Scholar
  46. 46.
    Farmer VC, Russell JD. The infra-red spectra of layer silicates. Spectrochim Acta. 1964;20:1149–73.CrossRefGoogle Scholar
  47. 47.
    Karakassides MA, Gournis D, Petridis D. An infrared reflectance study of Si–O vibrations in thermally treated alkali-saturated montmorillonites. Clay Miner. 1999;34:429–38.CrossRefGoogle Scholar
  48. 48.
    Ritz M, Vaculikova L, Plevova E, Matysek D, Malis J. Determination of chlorite, muscovite, albite and quartz in claystones and clay shales by infrared spectroscopy and partial least-squares regression. Acta Geodyn Geomater. 2012;9:511–20.Google Scholar
  49. 49.
    Horgnies M, Chen JJ, Bouillon C. Overview about the use of Fourier transform infrared spectroscopy to study cementitious materials. WIT Trans Eng Sci. 2013;77:251–62.CrossRefGoogle Scholar
  50. 50.
    Vieira CMF, Sales HF, Monteiro SN. Efeito da adição de argila fundente ilítica em cerâmica vermelha de argilas cauliníticas. Cerâmica. 2004;50:239–46.CrossRefGoogle Scholar
  51. 51.
    Abello S, Medina F, Tichit D, Perez-Ramirez J, Groen JC, Sueiras JE, et al. Aldol condensations over reconstructed Mg–Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem Eur J. 2005;11:728–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Debecker DP, Gaigneaux EM, Busca G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem Eur J. 2009;15:3920–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Baes CF, Mesmer RE. The hydrolysis of cations. New York: Wiley; 1976.Google Scholar
  54. 54.
    Miyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Min. 1983;31:305–11.CrossRefGoogle Scholar
  55. 55.
    Huang HT, Yang Y. Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol. 2008;68:2948–53.CrossRefGoogle Scholar
  56. 56.
    Chakraborty AK. Formation of silicon–aluminum spinel. J Am Ceram Soc [Internet]. 1979;62:120–4.CrossRefGoogle Scholar
  57. 57.
    Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed. 2013;52:1636–53.CrossRefGoogle Scholar
  58. 58.
    Thurman RB, Gerba CP, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control [Internet]. 1989;18:295–315.CrossRefGoogle Scholar
  59. 59.
    Patakfalvi R, Oszko A, Dekany I. Synthesis and characterization of silver nanoparticle/kaolinite composites. Coll Surf A Physicochem Eng Asp. 2003;220:45–54.CrossRefGoogle Scholar
  60. 60.
    Benli B, Yalm C. The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: a conductive atomic force microscopy (C-AFM) study. Appl Clay Sci. 2017;146:449–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.Departamento de Química Analítica, Institute of ChemistrySão Paulo State University (Unesp)AraraquaraBrazil
  2. 2.Departamento de Química e Ciências Ambientais, Institute of Biosciences, Humanities and Exact SciencesSão Paulo State University (Unesp)São José do Rio PretoBrazil
  3. 3.Departamento de Bioquímica e Tecnologia, Institute of ChemistrySão Paulo State University (Unesp)AraraquaraBrazil
  4. 4.Departamento de Físico-Química, Institute of ChemistrySão Paulo State University (Unesp)AraraquaraBrazil

Personalised recommendations