Advertisement

A novel method for predicting decomposition onset temperature of high-energy metal–organic frameworks

  • Amir Rajaei
  • Mohammad JafariEmail author
  • Kamal GhaniEmail author
Article
  • 22 Downloads

Abstract

The decomposition onset temperature, Tdecom, is an important parameter for investigating the thermal stability of chemicals. A novel method is introduced for the prediction of Tdecom of metal–organic frameworks, MOFs, through their structural parameters. It can be applied for different kinds of MOFs containing different secondary building units, SBUs. The new model is based on the coordination number of metal atoms in the SBU, and some structural moieties that depend on the type, number, and bond strength of organic and inorganic substituents. The present model is easily applicable for MOFs containing complex SBUs, without using complicated computer codes. Coefficient of determination, R2, for new model is 0.9124, and reliability of model is confirmed with statistical parameters such as root-mean-squared error, RMSE, mean absolute percent error, MAPE, and maximum of errors, which are 28.1, 7.3, and 74.9 °C, respectively. Further eight MOFs including complex SBUs are tested with this method which gives good results. In order to evaluate goodness of fit, goodness of prediction, accuracy, and precision of the new model, cross-validation is done.

Keywords

Decomposition onset temperature MOF Molecular structure Thermal stability SBU 

Notes

References

  1. 1.
    Li M, Li D, O’Keeffe M, Omar MY. Topological analysis of metal − organic frameworks with polytopic linkers and or multiple building units and the minimal transitivity principle. Chem Rev. 2014;114:1343–70.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kim J, Chen B, Reineke TM, Li H, Eddaoudi M, Moler DB, O’Keeffe M, Yaghi OM. Assembly of metal-organic frameworks from large organic and inorganic secondary building units new examples and simplifying principles for complex structures. J Am Chem Soc. 2001;123:8239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Weigang L, Zhangwen W, Zhi-Yuan G, Tian-Fu L, Jinhee P, Jihye P, Jian T, Muwei Zh, Qiang Z, Thomas G, Mathieu B, Hong-Cai Z. Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev. 2014;43:5561–93.CrossRefGoogle Scholar
  4. 4.
    Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112:933–69.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Omar MY. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science. 2002;295:469–72.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC. Stable metal–organic frameworks design, synthesis, and applications. Adv Mater. 2018;30:1704303.CrossRefGoogle Scholar
  7. 7.
    Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Qin JS, Zhang JC, Zhang M, Du DY, Li J, Su ZM, Wang YY, Pang SP, Li SH, Lan YQ. A highly energetic N-rich zeolite-like metal-organic framework with excellent air stability and insensitivity. Adv Sci. 2015;2:1500150.CrossRefGoogle Scholar
  9. 9.
    Wu BD, Yang L, Wang SW, Zhang TL, Zhang JG, Zhou ZN, Yu KB. Preparation, crystal structure, thermal decomposition, and explosive properties of a novel energetic compound [Zn(N2H4)2(N3)2]n: a new high-nitrogen Mmterial (N = 65.60%). Z Anorg Allg Chem. 2011;637:450–5.CrossRefGoogle Scholar
  10. 10.
    Bushuyev OS, Peterson GR, Brown P, Maiti A, Gee RH, Weeks BL, Hope-Weeks LJ. Metal-organic frameworks (MOFs) as safer, structurally reinforced energetics. Chem Eur J. 2013;19:1706–11.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Li S, Wang Y, Qi C, Zhao X, Zhang J, Zhang S, Pang S. 3D energetic metal-organic frameworks: synthesis and properties of high energy materials. Angew Chem Int Ed. 2013;52:14031–5.CrossRefGoogle Scholar
  12. 12.
    Mu B, Walton KS. Thermal analysis and heat capacity Sstudy of metal–organic frameworks. J Phys Chem C. 2011;115:22748–54.CrossRefGoogle Scholar
  13. 13.
    Makal TA, Wang X, Zhou HC. Tuning the moisture and thermal stability of metal–organic frameworks through incorporation of pendant hydrophobic groups. Cryst Growth Des. 2013;13:4760–8.CrossRefGoogle Scholar
  14. 14.
    Bosch M, Zhang M, Zhou HC. Increasing the stability of metal-organic frameworks. Adv Chem. 2014;2014:1–8.CrossRefGoogle Scholar
  15. 15.
    Kleist W, Maciejewski M, Baiker A. MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application. Thermochim Acta. 2010;499(1–2):71–8.CrossRefGoogle Scholar
  16. 16.
    Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA. 2006;103:10186–91.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Howarth AJ, Liu Y, Li P, Li P, Wang TC, Hupp JT, Farha OK. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater. 2016;1:1–15.CrossRefGoogle Scholar
  18. 18.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444.CrossRefGoogle Scholar
  19. 19.
    Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EL, Bonino F, Lillerud KP. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater. 2010;22:6632–40.CrossRefGoogle Scholar
  20. 20.
    Dehmer M, Emmert-Streib F, Graber A, Salvador A. Statistical modelling of molecular descriptors in QSAR/QSPR. Hoboken: Wiley; 2011.Google Scholar
  21. 21.
    Fayet G, Rotureau P, Adamo C. On the development of QSPR models for regulatory frameworks: The heat of decomposition of nitroaromatics as a test case. J Loss Prevent Proc. 2013;26:1100–5.CrossRefGoogle Scholar
  22. 22.
    Yu X, Huang L. Prediction of the onset temperature of decomposition of lubricant additives. J Therm Anal Calorim. 2017;130:943–7.CrossRefGoogle Scholar
  23. 23.
    Keshavarz MH, Esmaeilpour K, Saani MH, Taghizadeh H. A new method for assessment of glass transition temperature of ionic liquids from structure of their cations and anions without using any computer codes. J Therm Anal Calorim. 2017;130:2369–87.CrossRefGoogle Scholar
  24. 24.
    Ghani K, Keshavarz MH, Jafari M, Khademian F. A novel method for predicting decomposition onset temperature of cubic polyhedral oligomeric silsesquioxane derivatives. J Therm Anal Calorim. 2017;132:761–70.CrossRefGoogle Scholar
  25. 25.
    Hawkins DM, Basak SC, Mills D. Assessing model fit by cross-validation. J Chem Inf Comput Sci. 2003;43:579–86.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci. 2007;26:694–701.CrossRefGoogle Scholar
  27. 27.
    MacLennan J, Tang ZH, Crivat B. Data mining with microsoft SQL server 2008. New York: Wiley; 2009.Google Scholar
  28. 28.
    Golbraikh A, Tropsha A. Beware of Q 2! J Mol Graph Model. 2002;20:269–76.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29:476–88.CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Zhang S, Sun L, Yang Q, Han J, Wei Q, Xie G, Chen S, Gao S. Solvent-free dense energetic metal-organic framework (EMOF): to improve stability and energetic performance via in situ microcalorimetry. Chem Comm. 2017;53:3034–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Qu X, Zhai L, Wang B, Wei Q, Xie G, Chen S, Gao S. Copper-based energetic MOFs with 3-nitro-1H-1,2,4-triazole: solvent-dependent syntheses, structures and energetic performances. Dalton T. 2016;45:17304–11.CrossRefGoogle Scholar
  32. 32.
    Montgomery DC, Runger GC. Applied Statistics and Probability for Engineers. 6th ed. Hoboken: Wiley; 2014.Google Scholar
  33. 33.
    Wasserstein RL, Lazar NA. The ASA’s statement on p-values: context, process, and purpose. Am Stat. 2016;70:129–33.CrossRefGoogle Scholar
  34. 34.
    Everitt BS. The cambridge dictionary of statistics. Institute of Psychiatry, King’s College, University of London. 2002;1:1–410.Google Scholar
  35. 35.
    Leach AR, Gillet VG. An introduction to chemoinformatics. springer. 2007;1:1–255.Google Scholar
  36. 36.
    Fayet G, Rotureau P. Development of simple QSPR models for the impact sensitivity of nitramines. J Loss Prevent Proc. 2014;30:1–8.CrossRefGoogle Scholar
  37. 37.
    Friedrich M, Galvez-Ruiz JC, Klapotke TM, Mayer P, Weber B, Weigand JJBTA. copper complexes. Inorg Chem. 2005;44:8044–52.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wu BD, Bi YG, Li FG, Yang L, Zhou ZN, Zhang JG, Zhang TL. A novel stable high-nitrogen energetic compound: Copper(II) 1,2-diaminopropane azide. Z Anorg Allg Chem. 2014;640:224–8.CrossRefGoogle Scholar
  39. 39.
    Zhang S, Yang Q, Liu X, Qu X, Wei Q, Xie G, Chen S, Gao S. High-energy metal–organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coordin Chem Rev. 2016;307:292–312.CrossRefGoogle Scholar
  40. 40.
    Liu X, Gao W, Sun P, Su Z, Chen S, Wei Q, Xie G, Gaoa S. Environmentally-friendly high-energy MOFs crystal structure, thermostability, insensitivity and remarkable detonation performance. Green Chem. 2015;17:831–6.CrossRefGoogle Scholar
  41. 41.
    Wang SH, Zheng FK, Wu MF, Liu ZF, Chen J, Guo GC, Wu AQ. Hydrothermal syntheses, crystal structures and physical properties of a new family of energetic coordination polymers with nitrogen-rich ligand N-[2-(1H-tetrazol-5-yl)ethyl]glycine. CrystEngComm. 2013;15:2616–23.CrossRefGoogle Scholar
  42. 42.
    Feng Y, Liu X, Duan L, Yang Q, Wei Q, Xie G, Chen S, Yang X, Gao S. In situ synthesized 3D heterometallic metal-organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity. Dalton T. 2015;44:2333–9.CrossRefGoogle Scholar
  43. 43.
    Liu X, Yang Q, Su Z, Chen S, Xie G, Wei Q, Gao S. 3D high-energy-density and low sensitivity materials: synthesis, structure and physicochemical properties of an azide–Cu(II) complex with 3,5-dinitrobenzoic acid. Rsc Adv. 2014;4:16087–93.CrossRefGoogle Scholar
  44. 44.
    Yongan F, Yangang B, Wenyuan Z, Tonglai Z. anionic metal organic framework lead the way to eco-friendly high energy density material. J Mater Chem A. 2016;4:7596–600.CrossRefGoogle Scholar
  45. 45.
    Cudzilo S, Nita M. Synthesis and explosive properties of copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole bridging ligand. J Hazard Mater. 2010;177:146–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Yalu D, Panpan P, Baoping H, Hui S, Shenghua L, Siping P. High-density energetic metal-organic frameworks based on the 5,5’-Dinitro-2H,2’H-3,3’-bi-1,2,4-triazole. Molecules. 2017;22:1068.CrossRefGoogle Scholar
  47. 47.
    Orefuwa SA, Yang Y, Goudy AJ. Rapid solvothermal synthesis of an isoreticular metal–organic framework with permanent porosity for hydrogen storage. Micropor Mesopor Mat. 2012;153:88–93.CrossRefGoogle Scholar
  48. 48.
    Botas JA, Calleja G, Sánchez-Sánchez M, Orcajo MG. Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. Int J Hydrogen Energ. 2011;36:10834–44.CrossRefGoogle Scholar
  49. 49.
    Xie K, Fu Q, He Y, Kim J, Goh SJ, Nam E, Qiao GG, Webley PA. Synthesis of well dispersed polymer grafted metal-organic framework nanoparticles. Chem Commun. 2015;51:15566–9.CrossRefGoogle Scholar
  50. 50.
    DeCoste JB, Peterson GW, Schindler BJ, Killops KL, Browe MA, Mahle JJ. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J Mater Chem A. 2013;1:11922–32.CrossRefGoogle Scholar
  51. 51.
    D’Vries RF, Iglesias M, Snejko N, Alvarez-Garcia S, Gutiérrez-Puebla E, Monge MA. Mixed lanthanide succinate–sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. J Mater Chem. 2012;22:1191–8.CrossRefGoogle Scholar
  52. 52.
    Crespo TL. Engineered surface metal organic frameworks (MOFs) for encapsulation and delivery of macromolecules. PhD Thesis, University of Santiago of Compostela. 2015:1-498.Google Scholar
  53. 53.
    Xu CX, Zhang JG, Yin X, Jin X, Li T, Zhang TL, Zhou ZN. Cd(II) complexes with different nuclearity and dimensionality based on 3-hydrazino-4-amino-1,2,4-triazole. J Solid State Chem. 2015;226:59–65.CrossRefGoogle Scholar
  54. 54.
    Gao W, Liu X, Su Z, Zhang S, Yang Q, Wei Q, Chen S, Xie G, Yang X, Gao S. High-energy-density materials with remarkable thermostability and insensitivity: syntheses, structures and physicochemical properties of Pb(II) compounds with 3-(tetrazol-5-yl) triazole. J Mater Chem A. 2014;2:11958–65.CrossRefGoogle Scholar
  55. 55.
    Tang Z, Zhang JG, Liu ZH, Zhang TL, Yang L, Qiao XJ. Synthesis, structural characterization and thermal analysis of a high nitrogen-contented cadmium (II) coordination polymer based on 1,5-diaminotetrazole. J Mol Struct. 2011;1004:8–12.CrossRefGoogle Scholar
  56. 56.
    Xia Z, Chen S, Wei Q, Qiao C. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane. J Solid State Chem. 2011;184:1777–83.CrossRefGoogle Scholar
  57. 57.
    Liu Z, Zhang T, Zhang J, Wang S. Studies on three-dimensional coordination polymer [Cd2(N2H4)2(N3)4]n: crystal structure, thermal decomposition mechanism and explosive properties. J Hazard Mater. 2008;154:832–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zhang S, Liu X, Yang Q, Su Z, Gao W, Wei Q, Xie G, Chen S, Gao S. A new strategy for storage and transportation of sensitive high-energy materials: guest-dependent energy and sensitivity of 3D metal-organic-framework-based energetic compounds. Chem Eur J. 2014;20:7906–10.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mu B, Huang Y, Walton KS. A metal–organic framework with coordinatively unsaturated metal centers and microporous structure. CrystEngComm. 2010;12:2347–9.CrossRefGoogle Scholar
  60. 60.
    Mu B. Synthesis and gas adsorption study of porous metal-organic framework materials. PhD thesis, Georgia Institute of Technology. 2011:1-216.Google Scholar
  61. 61.
    Heck R, Bacsa J, Warren JE, Rosseinsky MJ, Bradshaw D. Triply interpenetrated (3,4)- and (3,5)-connected binodal metal–organic networks prepared from 1,3,5-benzenetrisbenzoate and 4,4′-bipyridyl. CrystEngComm. 2008;10:1687–92.CrossRefGoogle Scholar
  62. 62.
    Bai ZQ, Yuan L, Zhu L, Liu ZR, Chu SQ, Zheng LR, Zhang J, Chai ZF, Shi WQ. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A. 2015;3:525–34.CrossRefGoogle Scholar
  63. 63.
    Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydin AO, Hupp JT. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134:15016–21.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Manna B, Sharma S, Ghosh SK. Synthesis and Crystal Structure of a Zn(II)-Based MOF Bearing Neutral N-Donor Linker and SiF6 2− Anion. Crystals. 2018;8:37.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.Department of ChemistryMalek-ashtar University of TechnologyShahin-ShahrIslamic Republic of Iran

Personalised recommendations