Advertisement

Numerical study of nonlinear mixed convection inside stagnation-point flow over surface-reactive cylinder embedded in porous media

  • Kun Hong
  • Rasool Alizadeh
  • Mostafa Valizadeh Ardalan
  • Amireh Nourbakhsh
  • Nader Karimi
  • Yang Yang
  • Qingang XiongEmail author
Article
  • 34 Downloads

Abstract

Nonlinear mixed convection of heat and mass in a stagnation-point flow of an impinging jet over a solid cylinder embedded in a porous medium is investigated by applying a similarity technique. The problem involves a heterogenous chemical reaction on the surface of the cylinder and nonlinear heat generation in the porous solid. The conducted analysis considers combined heat and mass transfer through inclusions of Soret and Dufour effects and predicts the velocity, temperature and concentration fields as well as the average Nusselt and Sherwood number. It is found that intensification of the nonlinear convection results in development of higher axial velocities over the cylinder and reduces the thickness of thermal and concentration boundary layers. Hence, consideration of nonlinear convection can lead to prediction of higher Nusselt and Sherwood numbers. Further, the investigation reveals that the porous system deviates from local thermal equilibrium at higher Reynolds numbers and mixed convection parameter.

Keywords

Nonlinear mixed convection Stagnation-point flow Local thermal non-equilibrium Nonlinear heat generation Soret effect Dufour effect 

List of symbols

a

Cylinder radius (m)

\(a_{\text{sf}}\)

Interfacial surface area per unit volume of the porous medium (m−1)

\({\text{Bi}}\)

Biot number \({\text{Bi}} = \frac{{h_{\text{sf}} a_{\text{sf}} \cdot a}}{{4k_{\text{f}} }}\)

\(C\)

Fluid concentration (kg m−3)

\(C_{\text{p}}\)

Specific heat at constant pressure (J K−1 kg−1)

\(C_{\text{s}}\)

Concentration (kg m−3)

\(D\)

Molecular diffusion coefficient (m2 s−1)

\({\text{Df}}\)

Dufour number \({\text{Df}} = \frac{{D \cdot k_{\text{f}} }}{{C_{\text{s}} \cdot C_{\text{p}} }}\frac{{C_{\infty } }}{{\left( {T_{\text{w}} - T_{\infty } } \right)\upsilon }}\)

\(f(\eta )\)

Function related to u-component of velocity

\(f^{\prime } (\eta )\)

Normalised velocity related to w component

\(h\)

Heat transfer coefficient (W K−1 m−2)

\(h_{\text{sf}}\)

Interstitial heat transfer coefficient (W K−1 m−2)

\(k\)

Thermal conductivity (W K−1 m−2)

\(\bar{k}\)

Freestream strain rate (s−1)

\(k_{1}\)

Permeability of the porous medium (m2)

\(k_{\text{m}}\)

Mass transfer coefficient (m s−1)

\(k_{\text{R}}\)

Kinetic constant (kg m−2 s−1)

\(k_{\text{T}}\)

Thermal diffusion ratio

\(N^{*}\)

Ratio of concentration to thermal buoyancy forces \(N^{*} = \frac{{\beta_{3} \cdot C_{\infty } }}{{\beta_{1} \left( {T_{\text{w}} - T_{\infty } } \right)}}\)

\({\text{Nu}}\)

Nusselt number

\({\text{Nu}}_{\text{m}}\)

Nusselt number averaged over the surface of the cylinder

\(p\)

Pressure (Pa)

\(P\)

Dimensionless fluid pressure

\(P_{0}\)

The initial pressure (Pa)

\({ \Pr }\)

Prandtl number

\(Q_{\text{h}}\)

Heat source parameter \(Q_{\text{h}} = \frac{{Q_{1} a^{2} }}{{4k_{\text{f}} }}\)

\(q_{\text{m}}\)

Mass flow at the wall (kg m−2 s−1)

\(q_{\text{w}}\)

Heat flow at the wall (W m−2)

\(r\)

Radial coordinate

\({\text{Re}}\)

Freestream Reynolds number \({\text{Re}} = \frac{{\bar{k} \cdot a^{2} }}{2\upsilon }\)

\({\text{Sc}}\)

Schmidt number \({\text{Sc}} = \frac{\upsilon }{D}\)

\({\text{Sr}}\)

Soret number \({\text{Sr}} = \frac{{D \cdot k_{\text{f}} }}{{T_{\infty } }}\frac{{\left( {T_{\text{w}} - T_{\infty } } \right)}}{{C_{\infty } \cdot \alpha }}\)

\({\text{Sh}}\)

Sherwood number

\({\text{Sh}}_{\text{m}}\)

Average Sherwood number

\(T_{\text{m}}\)

Mean fluid temperature (K)

\(u, w\)

Velocity components along (\(r - \varphi - z\))-axis (m s−1)

\(z\)

Axial coordinate

Greek symbols

\(\alpha\)

Thermal diffusivity (m2 s−1)

\(\beta_{\text{C}}\)

Nonlinear mixed convection parameter for concentration \(\beta_{\text{C}} = \frac{{\beta_{4} \cdot C_{\infty } }}{{\beta_{3} }}\)

\(\beta_{\text{t}}\)

Nonlinear mixed convection parameter for temperature \(\beta_{\text{t}} = \frac{{\beta_{2} \left( {T_{\text{w}} - T_{\infty } } \right)}}{{\beta_{1} }}\)

\(\gamma\)

Modified conductivity ratio \(\gamma = \frac{{k_{\text{f}} }}{{k_{\text{s}} }}\)

\(\gamma^{*}\)

Damköhler number \(\gamma^{*} = \frac{{k_{\text{R}} \cdot a}}{2D}\frac{1}{{C_{\infty } }}\)

\(\eta\)

Similarity variable, \(\eta = \left( {\frac{r}{a}} \right)^{2}\)

\(\theta (\eta )\)

Non-dimensional temperature

\(\lambda\)

Permeability parameter, \(\lambda = \frac{{a^{2} }}{{4k_{1} }}\)

\(\varepsilon\)

Porosity

\(\varLambda\)

Dimensionless temperature difference \(\varLambda = \frac{{\left( {T_{\text{w}} - T_{\infty } } \right)}}{{T_{\infty } }}\)

\(\mu\)

Dynamic viscosity of fluid (N s m−2)

\(\upsilon\)

Kinematic viscosity of the fluid (m2 s−1)

\(\rho\)

Density of fluid (kg m−3)

\(\phi\)

Dimensionless concentration

\(\varphi\)

Angular (circumferential) coordinate

Subscripts

\(w\)

Condition on the surface of the cylinder

\(\infty\)

Far field

\(f\)

Fluid

\(s\)

Solid

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (17KJA530001) and Foundation of Huaian Municipal Science and Technology Bureau (HAA201734). Dr. Hong thanks the support of Six Talent Peaks Project of Jiangsu Province (2018-XNY-004).

References

  1. 1.
    Wu Q, Weinbaum S, Andreopoulos Y. Stagnation-point flows in a porous medium. Chem Eng Sci. 2005;60(1):123–34.CrossRefGoogle Scholar
  2. 2.
    Ishak A, Nazar R, Arifin NM, Pop I. Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate. Int J Therm Sci. 2008;47(4):417–22.CrossRefGoogle Scholar
  3. 3.
    Kokubun MA, Fachini FF. An analytical approach for a Hiemenz flow in a porous medium with heat exchange. Int J Heat Mass Transf. 2011;54(15):3613–21.CrossRefGoogle Scholar
  4. 4.
    Nazari M, Shakerinejad E, Nazari M, Rees DAS. Natural convection induced by a heated vertical plate embedded in a porous medium with transpiration: local thermal non-equilibrium similarity solutions. Transp Porous Media. 2013;98(1):223–38.CrossRefGoogle Scholar
  5. 5.
    Feng SS, Kuang JJ, Wen T, Lu TJ, Ichimiya K. An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling. Int J Heat Mass Transf. 2014;77:1063–74.CrossRefGoogle Scholar
  6. 6.
    Mabood F, Khan WA, Ismail AM. MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration. Chem Eng J. 2015;273:430–7.CrossRefGoogle Scholar
  7. 7.
    Postelnicu A. Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transf. 2007;43(6):595–602.CrossRefGoogle Scholar
  8. 8.
    Postelnicu A. Heat and mass transfer by natural convection at a stagnation point in a porous medium considering Soret and Dufour effects. Heat Mass Transf. 2010;46(8–9):831–40.CrossRefGoogle Scholar
  9. 9.
    Postelnicu A. Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Int J Heat Mass Transf. 2004;47(6–7):1467–72.CrossRefGoogle Scholar
  10. 10.
    Tsai R, Huang JS. Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface. Int J Heat Mass Transf. 2009;52(9–10):2399–406.CrossRefGoogle Scholar
  11. 11.
    Al-Sumaily GF, Hussen HM, Thompson MC. Validation of thermal equilibrium assumption in free convection flow over a cylinder embedded in a packed bed. Int Commun Heat Mass Transf. 2014;58:184–92.CrossRefGoogle Scholar
  12. 12.
    Alizadeh R, Rahimi AB, Karimi N, Alizadeh A. On the hydrodynamics and heat convection of an impinging external flow upon a cylinder with transpiration and embedded in a porous medium. Transp Porous Media. 2017;120(3):579–604.  https://doi.org/10.1007/s11242-017-0942-9.CrossRefGoogle Scholar
  13. 13.
    Alizadeh R, Karimi N, Arjmandzadeh R, Mehdizadeh A. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018;135(1):489–506.  https://doi.org/10.1007/s10973-018-7071-8.CrossRefGoogle Scholar
  14. 14.
    Alizadeh R, Karimi N, Mehdizadeh A, Nourbakhsh A. Analysis of transport from cylindrical surfaces subject to catalytic reactions and non-uniform impinging flows in porous media—a non-equilibrium thermodynamics approach. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08120-z.CrossRefGoogle Scholar
  15. 15.
    Afify AA. Effects of temperature-dependent viscosity with Soret and Dufour numbers on non-Darcy MHD free convective heat and mass transfer past a vertical surface embedded in a porous medium. Transp Porous Media. 2007;66(3):391–401.CrossRefGoogle Scholar
  16. 16.
    Chamkha AJ, Ben-Nakhi A. MHD mixed convection–radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s effects. Heat Mass Transf. 2008;44(7):845.CrossRefGoogle Scholar
  17. 17.
    Pal D, Chatterjee S. Soret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous medium. Appl Math Comput. 2013;219(14):7556–74.Google Scholar
  18. 18.
    Karimi N, Agbo D, Talat Khan A, Younger PL. On the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channel. Int J Therm Sci. 2015;96:128–48.  https://doi.org/10.1016/j.ijthermalsci.2015.05.002.CrossRefGoogle Scholar
  19. 19.
    Torabi M, Karimi N, Zhang K. Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy. 2015;93:106–27.  https://doi.org/10.1016/j.energy.2015.09.010.CrossRefGoogle Scholar
  20. 20.
    Jeng TM, Tzeng SC. Numerical study of confined slot jet impinging on porous metallic foam heat sink. Int J Heat Mass Transf. 2005;48(23–24):4685–94.CrossRefGoogle Scholar
  21. 21.
    Jeng TM, Tzeng SC. Experimental study of forced convection in metallic porous block subject to a confined slot jet. Int J Therm Sci. 2007;46(12):1242–50.CrossRefGoogle Scholar
  22. 22.
    Wong KC, Saeid NH. Numerical study of mixed convection on jet impingement cooling in a horizontal porous layer under local thermal non-equilibrium conditions. Int J Therm Sci. 2009;48(5):860–70.CrossRefGoogle Scholar
  23. 23.
    Wong KC. Thermal analysis of a metal foam subject to jet impingement. Int Commun Heat Mass Transf. 2012;39(7):960–5.CrossRefGoogle Scholar
  24. 24.
    Hwang ML, Yang YT. Numerical simulation of turbulent fluid flow and heat transfer characteristics in metallic porous block subjected to a confined slot jet. Int J Therm Sci. 2012;55:31–9.CrossRefGoogle Scholar
  25. 25.
    Marafie A, Khanafer K, Al-Azmi B, Vafai K. Non-Darcian effects on the mixed convection heat transfer in a metallic porous block with a confined slot jet. Numer Heat Transf Part A. 2008;54(7):665–85.CrossRefGoogle Scholar
  26. 26.
    Harris SD, Ingham DB, Pop I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Trans Porous Media. 2009;77(2):267–85.CrossRefGoogle Scholar
  27. 27.
    Sivasamy A, Selladurai V, Kanna PR. Mixed convection on jet impingement cooling of a constant heat flux horizontal porous layer. Int J Therm Sci. 2010;49(7):1238–46.CrossRefGoogle Scholar
  28. 28.
    Buonomo B, Lauriat G, Manca O, Nardini S. Numerical investigation on laminar slot-jet impinging in a confined porous medium in local thermal non-equilibrium. Int J Heat Mass Transf. 2016;98:484–92.CrossRefGoogle Scholar
  29. 29.
    Makinde OD. Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation. Meccanica. 2012;47(5):1173–84.CrossRefGoogle Scholar
  30. 30.
    Rosca NC, Pop I. Mixed convection stagnation point flow past a vertical flat plate with a second order slip: heat flux case. Int J Heat Mass Transf. 2013;65:102–9.CrossRefGoogle Scholar
  31. 31.
    Hayat T, Abbas Z, Pop I, Asghar S. Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int J Heat Mass Transf. 2010;53(1):466–74.CrossRefGoogle Scholar
  32. 32.
    Qayyum S, Hayat T, Alsaedi A, Ahmad B. Magnetohydrodynamic (MHD) nonlinear convective flow of Jeffrey nanofluid over a nonlinear stretching surface with variable thickness and chemical reaction. Int J Mech Sci. 2017;134:306–14.CrossRefGoogle Scholar
  33. 33.
    Qayyum S, Hayat T, Shehzad SA, Alsaedi A. Nonlinear convective flow of Powell–Erying magneto nanofluid with Newtonian heating. Results Phys. 2017;7:2933–40.CrossRefGoogle Scholar
  34. 34.
    Hayat T, Qayyum S, Alsaedi A, Ahmad B. Magnetohydrodynamic (MHD) nonlinear convective flow of Walters-B nanofluid over a nonlinear stretching sheet with variable thickness. Int J Heat Mass Transf. 2017;110:506–14.CrossRefGoogle Scholar
  35. 35.
    Hayat T, Qayyum S, Alsaedi A, Ahmad B. Nonlinear convective flow with variable thermal conductivity and Cattaneo–Christov heat flux. Neural Comput Appl. 2019;31(1):295–305.CrossRefGoogle Scholar
  36. 36.
    Khan MI, Qayyum S, Hayat T, Khan MI, Alsaedi A, Khan TA. Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys Lett A. 2018;382(31):2017–26.CrossRefGoogle Scholar
  37. 37.
    Hunt G, Karimi N, Torabi M. Two-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactor. Int J Heat Mass Transf. 2018;119:372–91.CrossRefGoogle Scholar
  38. 38.
    Hunt G, Torabi M, Govone L, Karimi N, Mehdizadeh A. Two-dimensional heat and mass transfer and thermodynamic analyses of porous microreactors with Soret and thermal radiation effects—an analytical approach. Chem Eng Process. 2018;126:190–205.CrossRefGoogle Scholar
  39. 39.
    Govone L, Torabi M, Wang L, Karimi N. Effects of nanofluid and radiative heat transfer on the double-diffusive forced convection in microreactors. J Therm Anal Calorim. 2019;135(1):45–59.CrossRefGoogle Scholar
  40. 40.
    Atkins P. Physical chemistry: thermodynamics, structure, and change. London: Macmillan Higher Education; 2014.Google Scholar
  41. 41.
    Cunning GM, Davis AMJ, Weidman PD. Radial stagnation flow on a rotating circular cylinder with uniform transpiration. J Eng Math. 1998;33(2):113–28.CrossRefGoogle Scholar
  42. 42.
    Alizadeh R, Rahimi AB, Arjmandzadeh R, Najafi M, Alizadeh A. Unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid with variable viscosity on a cylinder in constant heat flux. Alex Eng J. 2016;55(2):1271–83.CrossRefGoogle Scholar
  43. 43.
    Gomari S, Alizadeh R, Alizadeh A, Karimi N. Generation of entropy during forced convection of heat in nanofluid stagnation-point flow over a cylinder embedded in porous media. Numer Heat Transf Part A. 2019;75(10):647–73.CrossRefGoogle Scholar
  44. 44.
    Alizadeh R, Karimi N, Mehdizadeh A, Nourbakhsh A. Effect of radiation and magnetic field on mixed convection stagnation-point flow over a cylinder in a porous medium under local thermal non-equilibrium. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08415-1.CrossRefGoogle Scholar
  45. 45.
    Thomas JW. Numerical partial differential equations: finite difference methods, vol. 22. Berlin: Springer; 2013.Google Scholar
  46. 46.
    Wang CY. Axisymmetric stagnation flow on a cylinder. Q Appl Math. 1974;32(2):207–13.CrossRefGoogle Scholar
  47. 47.
    Gorla RSR. Heat transfer in an axisymmetric stagnation flow on a cylinder. Appl Sci Res. 1976;32(5):541–53.CrossRefGoogle Scholar
  48. 48.
    Incropera FP, Lavine AS, Bergman TL, DeWitt DP. Fundamentals of heat and mass transfer. New York: Wiley; 2007.Google Scholar
  49. 49.
    Torabi M, Zhang K, Karimi N, Peterson GP. Entropy generation in thermal systems with solid structures—a concise review. Int J Heat Mass Transf. 2016;97:917–31.CrossRefGoogle Scholar
  50. 50.
    Asadi A, Kadijani ON, Doranehgard MH, Bozorg MV, Xiong Q, Shadloo MS, Li LK. Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine. Renew Energy. 2019.  https://doi.org/10.1016/j.renene.2019.11.088.CrossRefGoogle Scholar
  51. 51.
    Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.CrossRefGoogle Scholar
  52. 52.
    Bozorg MV, Doranehgard MH, Hong K, Xiong Q. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renew Energy. 2020;145:2598–614.CrossRefGoogle Scholar
  53. 53.
    Gholamalipour P, Siavashi M, Doranehgard MH. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu–water nanofluid. Int Commun Heat Mass Transf. 2019;109:104367.CrossRefGoogle Scholar
  54. 54.
    Athar K, Doranehgard MH, Eghbali S, Dehghanpour H. Measuring diffusion coefficients of gaseous propane in heavy oil at elevated temperatures. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08768-7.CrossRefGoogle Scholar
  55. 55.
    Xiong Q, Bozorg MV, Doranehgard MH, Hong K, Lorenzini G. A CFD investigation of the effect of non-Newtonian behavior of Cu–water nanofluids on their heat transfer and flow friction characteristics. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08757-w.CrossRefGoogle Scholar
  56. 56.
    Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137(1):267–87.CrossRefGoogle Scholar
  57. 57.
    Mesbah M, Vatani A, Siavashi M, Doranehgard MH. Parallel processing of numerical simulation of two-phase flow in fractured reservoirs considering the effect of natural flow barriers using the streamline simulation method. Int J Heat Mass Transf. 2019;131:574–83.CrossRefGoogle Scholar
  58. 58.
    Guthrie DGP, Torabi M, Karimi N. Combined heat and mass transfer analyses in catalytic microreactors partially filled with porous material—the influences of nanofluid and different porous-fluid interface models. Int J Therm Sci. 2019;140:96–113.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  • Kun Hong
    • 1
  • Rasool Alizadeh
    • 2
  • Mostafa Valizadeh Ardalan
    • 3
  • Amireh Nourbakhsh
    • 4
  • Nader Karimi
    • 5
  • Yang Yang
    • 6
  • Qingang Xiong
    • 1
    • 7
    Email author
  1. 1.National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu ProvinceHuaiyin Institute of TechnologyHuai’anChina
  2. 2.Department of Mechanical Engineering, Quchan BranchIslamic Azad UniversityQuchanIran
  3. 3.Department of Mechanical EngineeringShahrood University of TechnologyShahroodIran
  4. 4.Department of Mechanical EngineeringBu-Ali Sina UniversityHamedanIran
  5. 5.School of EngineeringUniversity of GlasgowGlasgowUK
  6. 6.Stanley Black & Decker, Inc.TownsonUSA
  7. 7.IT Innovation CenterGeneral MotorsWarrenUSA

Personalised recommendations