Advertisement

Cooling curve thermal analysis of Al–Mg2Si–Cu–xSr composite

  • Saeed FarahanyEmail author
  • Nur Azmah Nordin
  • Hamidreza Ghandvar
Article
  • 15 Downloads

Abstract

In situ composites are today being considered for industrial use, owing to the fewer production steps involved, lower production cost, and better wetting of reinforcements. This study emphasises the characteristic features of an Al–Mg2Si–Cu in situ composite, with the addition of different amounts of Sr (0.01–0.1 mass%) as a modifier reagent, by employing computer-aided cooling curve thermal analysis. The identification of microstructures and phases was carried out using a scanning electron microscope equipped with an energy dispersive spectrometer. The results show that the nucleation temperature of the primary Mg2Si, eutectic Mg2Si, and Al5FeSi phases initially increased with the addition of 0.01 mass% Sr, and subsequently decreased with further addition of the element. Two new Sr-containing phases were detected after the precipitation of primary Mg2Si phase and prior to the formation of eutectic Mg2Si phase. A relationship between the cooling rate (CR) and solidification rate (SR) was established. Based on cell coherency point, it was found that the eutectic Al–Mg2Si cell required a longer time to grow with the increment of Sr. The solid fraction of Al5FeSi and Al5Cu2Mg8Si6 + Al2Cu phases remained constant at 8 ± 1% and 3 ± 1%, respectively. The increase in the terminal freezing range and the cracking susceptibility coefficient, by 182% and 16%, respectively, shows that Sr increases the probability of hot tearing.

Keywords

Composite Mg2Si Sr modifier Thermal analysis Solid fraction Hot tearing 

Notes

References

  1. 1.
    Zhao YG, Qin QD, Hang YH, Zhou W, Jiang QC. In-situ Mg2Si/Al–Si–Cu composite modified by strontium. J Mater Sci. 2005;40:1831–3.  https://doi.org/10.1007/s10853-005-0705-9.CrossRefGoogle Scholar
  2. 2.
    Mousavi GS, Emamy M, Rassizadehghani J. The effect of mischmetal and heat treatment on the microstructure and tensile properties of A357 Al–Si casting alloy. Mater Sci Eng A. 2012;556:573–81.  https://doi.org/10.1016/j.msea.2012.07.029.CrossRefGoogle Scholar
  3. 3.
    Nodooshan HRJ, Liu W, Wu G, Bahrami A, Pech-Canul MI, Emamy M. Mechanical and tribological characterization of Al–Mg2Si composites after yttrium addition and heat treatment. J Mater Eng Perform. 2014;23:1146–56.  https://doi.org/10.1007/s11665-014-0900-4.CrossRefGoogle Scholar
  4. 4.
    Emamy M, Khorshidi R, Raouf AH. The influence of pure Na on the microstructure and tensile properties of Al–Mg2Si metal matrix composite. Mater Sci Eng A. 2011;528:4337–42.  https://doi.org/10.1016/j.msea.2011.02.010.CrossRefGoogle Scholar
  5. 5.
    Ghandvar H, Idris MH, Ahmad N, Emamy M. Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al–15%Mg2Si in situ composite. Mater Charact. 2018;135:57–70.  https://doi.org/10.1016/j.matchar.2017.10.018.CrossRefGoogle Scholar
  6. 6.
    Li C, Liu X, Wu Y. Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys. J Alloys Compd. 2008;465:145–50.  https://doi.org/10.1016/j.jallcom.2007.10.111.CrossRefGoogle Scholar
  7. 7.
    Qin QD, Zhao YG, Liu C, Cong PJ, Zhou W. Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite. J Alloys Compd. 2008;454:142–6.  https://doi.org/10.1016/j.jallcom.2006.12.074.CrossRefGoogle Scholar
  8. 8.
    Zhang J, Fan Z, Wang Y, Zhou B. Microstructural refinement in Al–Mg2Si in situ composites. J Mater Sci Lett. 1999;18:783–4.  https://doi.org/10.1023/A:1006684916145.CrossRefGoogle Scholar
  9. 9.
    Hu JL, Tang CP, Zhang XM, Deng YL. Modification of Mg2Si in Mg–Si alloys with neodymium. Trans Nonferrous Met Soc China. 2013;23:3161–6.  https://doi.org/10.1016/s1003-6326(13)62847-2(English Ed.).CrossRefGoogle Scholar
  10. 10.
    Zhao YH, Wang XB, Du XH, Wang C. Effects of Sb and heat treatment on the microstructure of Al–15.5wt%Mg2Si alloy. Int J Miner Metall Mater. 2013;20:653–8.  https://doi.org/10.1007/s12613-013-0779-3.CrossRefGoogle Scholar
  11. 11.
    Yang MB, Pan FS, Shen J, Bai L. Comparison of Sb and Sr on modification and refinement of Mg2Si phase in AZ61–0.7Si magnesium alloy. Trans Nonferrous Met Soc China. 2009;19:287–92.  https://doi.org/10.1016/s1003-6326(08)60266-6.CrossRefGoogle Scholar
  12. 12.
    Wang D, Zhang H, Han X, Shao B, Li L, Cui J. The analysis of strontium modification on microstructure and mechanical properties of Al–25%Mg2Si in situ composite. J Mater Eng Perform. 2017;26:4415–23.  https://doi.org/10.1007/s11665-017-2889-y.CrossRefGoogle Scholar
  13. 13.
    Nordin NA, Farahany S, Ourdjini A, Bakar TAA, Hamzah E. Refinement of Mg2Si reinforcement in a commercial Al–20%Mg2Si in situ composite with bismuth, antimony and strontium. Mater Charact. 2013;86:97–107.  https://doi.org/10.1016/j.matchar.2013.10.007.CrossRefGoogle Scholar
  14. 14.
    Hosseini VAA, Shabestari SGG, Gholizadeh R. Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des. 2013;50:7–14.  https://doi.org/10.1016/j.matdes.2013.02.088.CrossRefGoogle Scholar
  15. 15.
    Ghoncheh MH, Shabestari SG, Abbasi MH. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-014-3867-3.CrossRefGoogle Scholar
  16. 16.
    Djurdjevic M, Jiang H, Sokolowski JH. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Mater Charact. 2001;46:31–8.  https://doi.org/10.1016/S1044-5803(00)00090-5.CrossRefGoogle Scholar
  17. 17.
    Malekan M, Shabestari SG. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2011;103:453–8.  https://doi.org/10.1007/s10973-010-1023-2.CrossRefGoogle Scholar
  18. 18.
    Malekan M, Dayani D, Mir A. Thermal analysis study on the simultaneous grain refinement and modification of 380.3 aluminum alloy. J Therm Anal Calorim. 2014;115:393–9.  https://doi.org/10.1007/s10973-013-3189-x.CrossRefGoogle Scholar
  19. 19.
    Liang SM, Chen RS, Blandin JJ, Suery M, Han EH. Thermal analysis and solidification pathways of Mg–Al–Ca system alloys. Mater Sci Eng A. 2008;480:365–72.  https://doi.org/10.1016/j.msea.2007.07.025.CrossRefGoogle Scholar
  20. 20.
    Farahany S, Bakhsheshi-Rad HR, Idris MH, Kadir MRA, Lotfabadi AF, Ourdjini A. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems. Thermochim Acta. 2012;527:180–9.  https://doi.org/10.1016/j.tca.2011.10.027.CrossRefGoogle Scholar
  21. 21.
    Jafari H, Idris MH, Ourdjini A, Farahany S. In situ melting and solidification assessment of AZ91D granules by computer-aided thermal analysis during investment casting process. Mater Des. 2013;50:181–90.  https://doi.org/10.1016/j.matdes.2013.02.035.CrossRefGoogle Scholar
  22. 22.
    Jafari H, Khalilnezhad M, Farahany S. Computer-aided cooling curve thermal analysis and microstructural evolution of Mg–5Zn–xY cast alloys. J Therm Anal Calorim. 2017;130:1429–37.  https://doi.org/10.1007/s10973-017-6144-4.CrossRefGoogle Scholar
  23. 23.
    Li J, Chen R, Ma Y, Ke W. Computer-aided cooling curve thermal analysis and microstructural characterization of Mg–Gd–Y–Zr system alloys. Thermochim Acta. 2014;590:232–41.  https://doi.org/10.1016/j.tca.2014.07.004.CrossRefGoogle Scholar
  24. 24.
    Dambatta MS, Izman S, Kurniawan D, Farahany S, Yahaya B, Hermawan H. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn–3Mg alloy as potential biodegradable implant material. Mater Des. 2015;85:431–7.  https://doi.org/10.1016/j.matdes.2015.06.181.CrossRefGoogle Scholar
  25. 25.
    Farahany S, Tat LH, Hamzah E, Bakhsheshi-Rad HR, Cho MH. Microstructure development, phase reaction characteristics and properties of quaternary Zn–0.5Al–0.5Mg–xBi hot dipped coating alloy under slow and fast cooling rates. Surf Coat Technol. 2017;315:112–22.  https://doi.org/10.1016/j.surfcoat.2017.01.074.CrossRefGoogle Scholar
  26. 26.
    Bakhsheshi-Rad HR, Hamzah E, Low HT, Cho MH, Kasiri-Asgarani M, Farahany S, Mostafa A, Medraj M. Thermal characteristics, mechanical properties, in vitro degradation and cytotoxicity of novel biodegradable Zn–Al–Mg and Zn–Al–Mg–xBi alloys. Acta Metall Sin. 2017;30:201–11.  https://doi.org/10.1007/s40195-017-0534-2(English Lett).CrossRefGoogle Scholar
  27. 27.
    Knuutinen A, Nogita K, McDonald SD, Dahle AK. Modification of Al–Si alloys with Ba, Ca, Y and Yb. J Light Met. 2001;1:229–40.  https://doi.org/10.1016/S1471-5317(02)00004-4.CrossRefGoogle Scholar
  28. 28.
    Farahany S, Nordin NA, Ourdjini A, Abu Bakar T, Hamzah E, Idris MH, Hekmat-Ardakan A. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in situ composite. Mater Charact. 2014;98:119–29.  https://doi.org/10.1016/j.matchar.2014.09.018.CrossRefGoogle Scholar
  29. 29.
    Veldman NLM, Dahle AK, StJohn DH, Arnberg L. Dendrite coherency of Al–Si–Cu alloys. Met Mater Trans A. 2001;32:147–55.  https://doi.org/10.1007/s11661-001-0110-1.CrossRefGoogle Scholar
  30. 30.
    Malekan M, Shabestari SG. Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy. Metall Mater Trans A. 2009;40:3196.  https://doi.org/10.1007/s11661-009-9978-y.CrossRefGoogle Scholar
  31. 31.
    Hadian R, Emamy M, Varahram N, Nemati N. The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite. Mater Sci Eng A. 2008;490:250–7.  https://doi.org/10.1016/j.msea.2008.01.039.CrossRefGoogle Scholar
  32. 32.
    Brůna M, Bolibruchová D, Pastirčák R. Numerical simulation of porosity for Al based alloys. Procedia Eng. 2017;177:488–95.  https://doi.org/10.1016/j.proeng.2017.02.250.CrossRefGoogle Scholar
  33. 33.
    Emadi D, Whiting LV, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal. 2005;81:235–41.  https://doi.org/10.1007/s10973-005-0772-9.CrossRefGoogle Scholar
  34. 34.
    Djurdjevic MB, Schmid-Fetzer R. Thermodynamic calculation as a tool for thixoforming alloy and process development. Mater Sci Eng A. 2006;417:24–33.  https://doi.org/10.1016/j.msea.2005.08.227.CrossRefGoogle Scholar
  35. 35.
    Clyne T, Davies G. Influence of composition on solidification cracking susceptibility in binary alloy systems. Br. Foundrym. 1981;74:65–73.Google Scholar
  36. 36.
    Gawronska E. Different Techniques of determination of the cracking criterion for solidification in casting. Procedia Eng. 2017;177:86–91.  https://doi.org/10.1016/j.proeng.2017.02.188.CrossRefGoogle Scholar
  37. 37.
    Xia Z, Li K. First-principles study on Al4 Sr as the heterogeneous nucleus of Mg2 Si. Mater Res Express. 2016;3:126503.  https://doi.org/10.1088/2053-1591/3/12/126503.CrossRefGoogle Scholar
  38. 38.
    Timpel M, Wanderka N, Schlesiger R, Yamamoto T, Lazarev N, Isheim D, Schmitz G, Matsumura S, Banhart J. The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 2012;60:3920–8.  https://doi.org/10.1016/j.actamat.2012.03.031.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringBuein Zahra Technical UniversityQazvinIran
  2. 2.Malaysia-Japan International Institute of Technology (MJIIT)Universiti Teknologi MalaysiaKuala LumpurMalaysia
  3. 3.Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia

Personalised recommendations