Advertisement

Kinetic of pyrite thermal degradation under oxidative environment

  • M. Vázquez
  • I. Moreno-Ventas
  • I. Raposo
  • A. Palma
  • M. J. DíazEmail author
Article
  • 6 Downloads

Abstract

Pyrite is the most common mineral in polymetallic sulphides ores. In order to apply the combustion group theory to the pyrometallurgical processes that occur in the reaction shaft, it is necessary to know the kinetic processes that happen in pyrite. In this study, thermogravimetric analysis was carried out under oxidative atmospheric conditions with 100% O2 and a heating ramp of 5, 10, 15 and 20 °C min−1. The material used was pyrite with a grain size of 63–125 μm. From the thermogravimetric data, we got the kinetic parameters of the oxidative reactions of pyrite. The different kinetic methods used in this study have been E1641-16 ASTM, Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman. These methods were used for obtaining the kinetic parameters through regression analysis, sum of squares, mean residuals between experimental and calculated values and Student coefficient (95%) and to determine which kinetic method is the most suitable to describe the kinetics of pyrite oxidation.

Keywords

Pyrite Thermogravimetry Sulphide Kinetic Ozawa–Flynn–Wall Kissinger–Akahira–Sunose Friedman ASTM-E1641 Copper metallurgy Flash smelting 

Notes

References

  1. 1.
    RRUFF™ Project database http://rruff.info/pyrite/display=default/ (2019). Accessed 13 Mar 2019.
  2. 2.
    Zussman J, Howie RA, Deer WA. An introduction to the rock forming minerals. An introduction to the rock-forming minerals. 2nd ed. London: Longman Scientific and Technical; 1992.  https://doi.org/10.1180/minmag.1992.056.385.20.CrossRefGoogle Scholar
  3. 3.
    Schlesinger ME, King MJ, Sole KC, Davenport WG. Extractive metallurgy of copper. London: Elsevier; 2011.Google Scholar
  4. 4.
    Sancho JP, Verdeja LF, Ballester A. Metalurgia Extractiva. Volumen II: Procesos de obtención. Madrid: Edited by Sintesis; 2000. ISBN 84-7738-803-2.Google Scholar
  5. 5.
    Davenport WG, Jones DM, King MJ, Partelpoeg EH. Flash smelting: analysis, control and optimization. 2nd ed. Pittsburgh: The Minerals, Metals and Materials Society (TMS); 2003.Google Scholar
  6. 6.
    Yazawa A, Kameda A. Copper smelting. I. Partial liquidus diagram for FeS-FeO-SiO2 system. Tech Rep Tohoku Univ. 1953;16:40–58.Google Scholar
  7. 7.
    Sharma RC, Chang YA. A thermodynamic analysis of the copper sulfur system. Metall Trans B. 1980;11B:575–83.CrossRefGoogle Scholar
  8. 8.
    Dunn JG, Jayaweera SAA. Applications of thermoanalytical methods to studies of flash smelting reactions. Thermochim Acta. 1985.  https://doi.org/10.1016/0040-6031(85)85543-X.CrossRefGoogle Scholar
  9. 9.
    Dunn JG, De GC, O’Connor BH. The effect of experimental variables on the mechanism of the oxidation of pyrite: Part 1. Oxidation of particles less than 45 μm in size. Thermochim Acta. 1989;145:115–30.CrossRefGoogle Scholar
  10. 10.
    Reimers GW, Hjelmstad KE. Analysis of the oxidation of chalcopyrite, chalcocite, galena, pyrrhotite, marcasite and arsenopyrite. Department of the Interior, Bureau of Mines. Report of investigations (United States. Bureau of Mines). Pittsburgh, Pa. U.S.;1987. p. 9118.Google Scholar
  11. 11.
    Jorgensen FRA, Moyle FJ, Wadsley MW. Structural changes associated with the ignition of pyrite and chalcopyrite during flash smelting. In: Process mineralogy IX, international symposium of applied mineralogy MAC-ICAM-CAN. Montreal, CA; 1989. 14–17 May, pp. 323–341.Google Scholar
  12. 12.
    Perez-Tello M, Sohn HY, Löttiger J. Determination of the oxidation characteristics of solid copper matte particles by differential scanning calorimetry and thermogravimetric analysis. Mining Metall Explor. 1999.  https://doi.org/10.1007/BF03402800.CrossRefGoogle Scholar
  13. 13.
    Pérez-Fontes SE, Pérez-Tello M, Prieto-López LO, Brown F, Castillón-Barraza F. Thermoanalytical study on the oxidation of sulfide minerals at high temperatures. Mining Metall Process. 2007.  https://doi.org/10.1007/bf03403377.CrossRefGoogle Scholar
  14. 14.
    ASTM Test Method E1641. Standard test method for decomposition kinetics by thermogravimetry, ASTM book of standards 14.02, American Society for Testing and Materials; 1994. pp. 1042–1046.Google Scholar
  15. 15.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965.  https://doi.org/10.1246/bcsj.38.1881.CrossRefGoogle Scholar
  16. 16.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1965;2(3):301–24.  https://doi.org/10.1007/BF01911411.CrossRefGoogle Scholar
  17. 17.
    Flynn J, Wall L. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  18. 18.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956.  https://doi.org/10.6028/jres.057.026.CrossRefGoogle Scholar
  19. 19.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  20. 20.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.CrossRefGoogle Scholar
  21. 21.
    Z̆ivković Z̆D, Mitevska N, Savović V. Kinetics and mechanism of the pyrite–pyrite concentrate oxidation process. Thermochim Acta. 1996.  https://doi.org/10.1016/0040-6031(96)02883-3.CrossRefGoogle Scholar
  22. 22.
    Zhou Y, Xu P, Cheng H, Liu Q. Thermal phase transition of pyrite from coal. J Therm Anal Calorim. 2018;134(3):2391–6.CrossRefGoogle Scholar
  23. 23.
    Earnest CM. Descriptive oxidative profiles for pyrite in the low temperature ash component of coals by differential thermal analysis. Thermochim Acta. 1984;75(1–2):219–32.CrossRefGoogle Scholar
  24. 24.
    Cheng H, Liu Q, Huang M, Zhang S, Frost RL. Application of TG–FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite. Thermochim Acta. 2013;555:1–6.CrossRefGoogle Scholar
  25. 25.
    Dunn JG, De GC, O’Connor BH. The effect of experimental variables on the mechanism of the oxidation of pyrite: Part 2. Oxidation of particles of size 90–125 μm. Thermochim Acta. 1989;155:135–49.CrossRefGoogle Scholar
  26. 26.
    Dunn JG. The oxidation of sulphide minerals. Thermochim Acta. 1997;300(1–2):127–39.CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006.  https://doi.org/10.1007/s10973-005-7044-6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias ExperimentalesUniversity of HuelvaHuelvaSpain
  2. 2.Centro de Investigación en Química Sostenible (CIQSO)University of HuelvaHuelvaSpain
  3. 3.Escuela Técnica Superior de IngenieríaUniversity of HuelvaHuelvaSpain
  4. 4.Centre for Research in Product Technology and Chemical Processes (Pro2TecS)University of HuelvaHuelvaSpain

Personalised recommendations