Thermal behavior and smoke characteristics of glass/epoxy laminate and its foam core sandwich composite

  • Yanying Xu
  • Xiaodong Sun
  • Ruiqing Shen
  • Zhi Wang
  • Qingsheng WangEmail author


Thermal behavior and smoke characteristics of glass/epoxy laminate and its foam core sandwich composite were comprehensively investigated using thermogravimetric analysis, TG–FTIR analysis, smoke density test and cone calorimeter test. The thermal decomposition, thermal interpretation of gas release, smoke density, smoke release, carbon monoxide and carbon dioxide productions were analyzed and compared for glass/epoxy laminate and its foam core sandwich composite. Their kinetic and thermodynamic models were obtained, and the apparent activation energy, pre-exponential factor and thermodynamic parameters were determined correspondingly. The results show that there are significant differences in the thermal behavior and smoke characteristics between these two composites. Compared with glass/epoxy laminate, foam core sandwich composite demonstrates a higher propensity of pyrolysis and combustions and greater hazards to life and property.


Glass/epoxy composite Apparent activation energy Thermal decomposition Smoke release 



  1. 1.
    Jiang Z, Zou N, Ye D. Application technologies of glass fibres. Beijing: China Petrochemical Press; 2004.Google Scholar
  2. 2.
    Shen Z. Design handbook of composite structure. Beijing: Aviation Industrial Press; 2004.Google Scholar
  3. 3.
    Marsh G. Composites consolidate in commercial aviation. Reinf Plast. 2016;60(5):302–5.CrossRefGoogle Scholar
  4. 4.
    Arunprakash VR, Rajadurai A. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composites. Appl Surf Sci. 2016;384:99–106.CrossRefGoogle Scholar
  5. 5.
    Mouritz AP, Gibson AG. Fire properties of polymer composite materials. Dordrecht: Springer; 2006.Google Scholar
  6. 6.
    Ahmad K, Ahmad RR, Hamid RM. Investigation of time-dependent behavior of sandwich panel with poly vinyl carbon foam and fiber glass/epoxy faces. J Compos Mater. 2019;53(13):1803–13.CrossRefGoogle Scholar
  7. 7.
    Rafiq A, Merah N. Nanoclay enhancement of flexural properties and water uptake resistance of glass fiber-reinforced epoxy composites at different temperatures. J Compos Mater. 2019;53(2):143–54.CrossRefGoogle Scholar
  8. 8.
    Liva P, Sibin S, Janis V. Effect of degree of cure on viscoplastic shear strain development in layers of [45/− 45] s glass fibre/epoxy resin composites. J Compos Mater. 2018;52(24):3277–88.CrossRefGoogle Scholar
  9. 9.
    Alexander BM, Nicholas AG, William AP, Mary LG. Cone calorimeter testing of S2 glass reinforced polymer composites. Fire Mater. 2009;33:323–44.CrossRefGoogle Scholar
  10. 10.
    Kandare E, Kandola BK, Myler P, Edwards G. Thermo-mechanical responses of fiber-reinforced epoxy composites exposed to high temperature environments. Part I: experimental data acquisition. J Compos Mater. 2010;44:3093–113.CrossRefGoogle Scholar
  11. 11.
    Shen R, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang Q. Cone calorimeter analysis of flame retardant poly (methylmethacrylate)-silica nanocomposites. J Therm Anal Calorim. 2017;128(3):1443–51.CrossRefGoogle Scholar
  12. 12.
    Xu Y, Lv C, Shen R, Wang Z, Wang Q. Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite. J Therm Anal Calorim. 2019;136(3):1237–47.CrossRefGoogle Scholar
  13. 13.
    Lindholm J, Brink A, Hupa M. Cone calorimeter–—a tool for measuring heat release rate. Turku: Åbo Akademi Process Chemistry Centre; 2009.Google Scholar
  14. 14.
    Patel RJ, Wang Q. Prediction of properties and modeling fire behavior of polyethylene using cone calorimeter. J Loss Prev Process Ind. 2016;41:411–8.CrossRefGoogle Scholar
  15. 15.
    Chen Y, Zhang S, Han X, Zhang X, Yi M, Yang S, Yu D, Liu W. Catalytic dechlorination and charring reaction of polyvinyl chloride by CuAl layered double hydroxide. Energy Fuel. 2018;32:2407–13.CrossRefGoogle Scholar
  16. 16.
    Tranchard P, Duquesne S, Samyn F, et al. Kinetic analysis of the thermal decomposition of a carbon fiber-reinforced epoxy resin laminate. J Anal Appl Pyrolysis. 2017;126:14–21.CrossRefGoogle Scholar
  17. 17.
    Kissinger HE. Reaction kinetics in the differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  18. 18.
    Kim YS, Kim YS, Kim SH. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste–waste lube oil compounds. Environ Sci Technol. 2010;44(13):5313–7.CrossRefGoogle Scholar
  19. 19.
    Fu X. Physical chemistry. Beijing: Higher Education Press; 1990.Google Scholar
  20. 20.
    Vlase T, Vlase G, Doca M. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72(2):597–604.CrossRefGoogle Scholar
  21. 21.
    Qi Y, Wu W, Han L, Qu H, Han X, Wang A, Xu J. Using TG-–FTIR and XPS to understand thermal degradation and flame-retardant mechanism of flexible poly (vinyl chloride) filled with metallic ferrites. J Therm Anal Calorim. 2016;123(2):1263–71.CrossRefGoogle Scholar
  22. 22.
    Zhu H, Jiang X, Yan J. TG–FTIR analysis of PVC thermal degradation and HCl removal. J Anal Appl Pyrolysis. 2008;82:1–9.CrossRefGoogle Scholar
  23. 23.
    Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. 2nd ed. Boston: Academic Press; 1990.Google Scholar
  24. 24.
    Zhang H, Zhang S, Stewart P, Zhu C, Liu W, Hexemer A, Schaible E, Wang C. Thermal stability and thermal aging of poly (vinyl chloride)/MgAl layered double hydroxides composites. Chin J Polym Sci. 2016;34(5):542–51.CrossRefGoogle Scholar
  25. 25.
    Zhang J, Chen T, Wu J. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere. Waste Manag. 2015;43:152–61.CrossRefGoogle Scholar
  26. 26.
    Jackson RS, Rager A. The use of reduced pressure to expand the capabilities of TGA–FTIR. Thermochim Acta. 2001;367:415–24.CrossRefGoogle Scholar
  27. 27.
    Drysdale D. An introduction to fire dynamics. 3rd ed. Chichester: Wiley; 2011.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Liaoning Key Laboratory of Aircraft Safety and AirworthinessShenyang Aerospace UniversityShenyangChina
  2. 2.Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations