Probing the combustion and pyrolysis behaviors of polyurethane foam from waste refrigerators

  • Zhitong YaoEmail author
  • Shaoqi Yu
  • Weiping Su
  • Daidai Wu
  • Jie Liu
  • Weihong Wu
  • Junhong TangEmail author


Polyurethane foam (PUR) from waste refrigerators has long been recognized as a difficult-to-treat electronic waste, due to its bulkiness, low weight and chlorofluorocarbon content. In this work, the combustion and pyrolysis behaviors of PUR were investigated using a versatile thermogravimetric–Fourier infrared spectrum–mass spectrum (TG/FT-IR/MS) technique. The decomposition mechanisms in both thermal processes were determined, and the fate of halogens was probed well. TG analysis indicated that the PUR combustion could be divided into three main stages with peak temperatures of 328, 557 and 970 °C, respectively. As a comparison, its pyrolysis could be divided into two steps with peak temperatures of 332 and 970 °C. FT-IR results indicated that the PUR combusted vigorously at 400–600 °C, whereas it decomposed drastically at the lower temperature of 200–400 °C in pyrolysis. MS analysis revealed that the urethane bonds in the PUR molecules broke into isocyanates and polyols at 200–400 °C in combustion, which further decomposed at 400–650 °C and reacted with halogens. However, the ester bonds ruptured into aromatic nitro compounds and ethers at 200 °C below in pyrolysis. At higher temperature range of 200–500 °C, more halogenated derivatives were detected with lower intensity. In addition to the halogenated products such as chlorofluorocarbons, chlorobenzene, dichlorobenzene, o-chloroaniline, and trifluoroacetone, small molecules of hydrogen cyanide, ammonia, carbon dioxide, carbon monoxide were all detected.


Polyurethane foam Combustion Pyrolysis Decomposition mechanism Fate of halogens 



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51606055 and 51911530460) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19B070008).


  1. 1.
    Li J, Zeng X, Chen M, Ogunseitan OA, Stevels A. “Control-Alt-Delete”: rebooting solutions for the e-waste problem. Environ Sci Technol. 2015;49(12):7095–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Yao Z, Ling T, Sarker PK, Su W, Liu J, Wu W, Tang J. Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: a critical review. Renew Sustain Energy Rev. 2018;81:595–604.CrossRefGoogle Scholar
  3. 3.
    Yu S, Su W, Wu D, Yao Z, Liu J, Tang J, Wu W. Thermal treatment of flame retardant plastics: a case study on a waste TV plastic shell sample. Sci Total Environ. 2019;675:651–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Conesa JA, Soler A. Decomposition kinetics of materials combining biomass and electronic waste. J Therm Anal Calorim. 2017;128(1):225–33.CrossRefGoogle Scholar
  5. 5.
    Jin-Hui L. I.; Dong Q. Y.; Yao Z. T.; Liu L. L.; Environment S. O.; University T. Study on the management status and countermeasures for waste polyurethane foam from refrigerators in China. China Environ Sci. 2013;33(12):2262–7.Google Scholar
  6. 6.
    Kjeldsen P, Scheutz C. Short-and long-term releases of fluorocarbons from disposal of polyurethane foam waste. Environ Sci Technol. 2003;37(21):5071–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Kjeldsen P, Jensen MH. Release of CFC-11 from disposal of polyurethane foam waste. Environ Sci Technol. 2001;35(14):3055–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu J, Duan N, Yang Y, Guo Y, Qiao Q. CFC-11 releasing quantity of polyurethane rigid foam disposal and waste refrigerator disassembly. Environ Pollut Control. 2010;7:003.Google Scholar
  9. 9.
    Cachaço AG, Afonso MD, Pinto ML. New applications for foam composites of polyurethane and recycled rubber. J Appl Polym Sci. 2013;129(5):2873–81.CrossRefGoogle Scholar
  10. 10.
    Simón D, Borreguero AM, De Lucas A, Rodríguez JF. Glycolysis of viscoelastic flexible polyurethane foam wastes. Polym Degrad Stab. 2015;116:23–35.CrossRefGoogle Scholar
  11. 11.
    Gómez EF, Luo X, Li C, Michel FC Jr, Li Y. Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation. Polym Degrad Stab. 2014;102:195–203.CrossRefGoogle Scholar
  12. 12.
    Mahajan N, Gupta P. New insights into the microbial degradation of polyurethanes. RSC Adv. 2015;5(52):41839–54.CrossRefGoogle Scholar
  13. 13.
    Terakado O, Yanase H, Hirasawa M. Pyrolysis treatment of waste polyurethane foam in the presence of metallic compounds. J Anal Appl Pyrol. 2014;108:130–5.CrossRefGoogle Scholar
  14. 14.
    Garrido MA, Font R. Pyrolysis and combustion study of flexible polyurethane foam. J Anal Appl Pyrol. 2015;113:202–15.CrossRefGoogle Scholar
  15. 15.
    Garrido MA, Gerecke AC, Heeb N, Font R, Conesa JA. Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam. Chemosphere. 2017;168:667–75.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Garrido MA, Font R, Conesa JA. Pollutant emissions during the pyrolysis and combustion of flexible polyurethane foam. Waste Manag. 2016;52:138–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Terakado O, Yanase H, Hirasawa M. Pyrolysis treatment of waste polyurethane foam in the presence of metallic compounds. J Anal Appl Pyrol. 2014;108:130–5.CrossRefGoogle Scholar
  18. 18.
    Bakare IO, Okieimen FE, Pavithran C, Khalil HA, Brahmakumar M. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des. 2010;31(9):4274–80.CrossRefGoogle Scholar
  19. 19.
    Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Int J Nanomed. 2011;6:2375.CrossRefGoogle Scholar
  20. 20.
    Zhang X, Xu R, Wu Z, Zhou C. The synthesis and characterization of polyurethane/clay nanocomposites. Polym Int. 2003;52(5):790–4.CrossRefGoogle Scholar
  21. 21.
    Ge Z, Zhang X, Dai J, Li W, Luo Y. Synthesis, characterization and properties of a novel fluorinated polyurethane. Eur Polymer J. 2009;45(2):530–6.CrossRefGoogle Scholar
  22. 22.
    Jiao L, Xiao H, Wang Q, Sun J. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab. 2013;98(12):2687–96.CrossRefGoogle Scholar
  23. 23.
    Gunawan P, Mei L, Teo J, Ma J, Highfield J, Li Q, Zhong Z. Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir. 2012;28(39):14090–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Sanguinito S, Goodman A, Tkach M, Kutchko B, Culp J, Natesakhawat S, Fazio J, Fukai I, Crandall D. Quantifying dry supercritical CO2-induced changes of the Utica Shale. Fuel. 2018;226:54–64.CrossRefGoogle Scholar
  25. 25.
    Singh RK, Prasad DN, Bhardwaj TR. Synthesis, physicochemical and kinetic studies of redox derivative of bis (2-chloroethylamine) as alkylating cytotoxic agent for brain delivery. Arab J Chem. 2015;8(3):380–7.CrossRefGoogle Scholar
  26. 26.
    Abbas ZK, Barton SJ, Foot PJ, Morgan H. Conductive polyaniline/poly (epichlorohydrin-co-ethylene oxide) blends prepared in solution. Polym Polym Compos. 2007;15(1):1–8.Google Scholar
  27. 27.
    Kellmann S, Clarmann TV, Stiller GP, Eckert E, Glatthor N, Höpfner M, Kiefer M, Orphal J, Funke B, Grabowski U. Global CFC-11 (CCl3F) and CFC-12 (CCl2F2) measurements with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS): retrieval, climatologies and trends. Atmos Chem Phys. 2012;12(24):11857–75.CrossRefGoogle Scholar
  28. 28.
    Keim C, Liu GY, Blom CE, Fischer H, Gulde T, Höpfner M, Piesch C, Ravegnani F, Roiger A, Schlager H. Vertical profile of peroxyacetyl nitrate (PAN) from MIPAS-STR measurements over Brazil in February 2005 and its contribution to tropical UT NOy partitioning. Atmos Chem Phys. 2008;8(16):4891–902.CrossRefGoogle Scholar
  29. 29.
    Kumar Saun N, Kumar Narwal S, Gupta R. Effect of carbon chain length of alcohols on the syntheses of cinnamate esters by immobilized lipase from Bacillus aerius. Curr Biotechnol. 2017;6(2):168–76.CrossRefGoogle Scholar
  30. 30.
    Zapata F, Ferreiro-González M, García-Ruiz C. Interpreting the near infrared region of explosives. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;204:81–7.CrossRefGoogle Scholar
  31. 31.
    Saadatkish N, Nouri Khorasani S, Morshed M, Allafchian AR, Beigi MH, Masoudi Rad M, Esmaeely Neisiany R, Nasr Esfahani MH. A ternary nanofibrous scaffold potential for central nerve system tissue engineering. J Biomed Mater Res Part A. 2018;106:2394–401.CrossRefGoogle Scholar
  32. 32.
    Burchert A, Yao S, Müller R, Schattenberg C, Xiong Y, Kaupp M, Driess M. An isolable silicon dicarbonate complex from carbon dioxide activation with a silylone. Angew Chem Int Ed. 2017;56(7):1894–7.CrossRefGoogle Scholar
  33. 33.
    Bai Y, Bian X, Wu W. Catalytic properties of CuO/CeO2-Al2O3 catalysts for low concentration NO reduction with CO. Appl Surf Sci. 2019;463:435–44.CrossRefGoogle Scholar
  34. 34.
    Behbahani FK, Mehraban S. Synthesis of 2-Amino-3-cyano-7-hydroxy-4H-chromenes using l-Proline as a biocatalyst. J Korean Chem Soc. 2015;59(4):284–8.CrossRefGoogle Scholar
  35. 35.
    Kebukawa Y, Nakashima S, Otsuka T, Nakamura-Messenger K, Zolensky M. E (2009) Rapid contamination during storage of carbonaceous chondrites prepared for micro FTIR measurements. Meteorit Planet Sci. 2009;44(4):545–57.CrossRefGoogle Scholar
  36. 36.
    Heidari-Keshel S, Entezari M, Rezaei-Tavirani M, Ebrahimi M, Rezaei-Tavirani M. Functionalization of MWNT-COOH by one-step reaction with (3-oxoindolin-2-ylidene) urea and in vitro antitumor study on gastric cancer. Gastroenterol Hepatol Bed Bench. 2013;6:39–44.Google Scholar
  37. 37.
    Roldan PS, Alcântara IL, Padilha CC, Padilha PM. Determination of copper, iron, nickel and zinc in gasoline by FAAS after sorption and preconcentration on silica modified with 2-aminotiazole groups. Fuel. 2005;84(2–3):305–9.CrossRefGoogle Scholar
  38. 38.
    Lin L, Sun H, Zhang K, Zhong Y, Cheng Q, Bian X, Xin Q, Cheng B, Feng X, Zhang Y. Novel affinity membranes with macrocyclic spacer arms synthesized via click chemistry for lysozyme binding. J Hazard Mater. 2017;327:97–107.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cho L, Huang K. Identification of condom lubricants by FT-IR Spectroscopy. Forensic Sci J. 2012;11(11):33–40.Google Scholar
  40. 40.
    Luo H, Ren S, Ma Y, Fang G, Jiang G. Preparation and properties of kraft lignin-N-isopropyl acrylamide hydrogel. BioResources. 2015;10(2):3507–19.Google Scholar
  41. 41.
    Kolo AM, Ahmed A, Ajanaku IK, Ameh PO. Electrochemical study of the corrosion inhibition of Delonix regia for mild steel in sulphuric acid medium. J Ind Environ Chem. 2017;1(1):15–21.Google Scholar
  42. 42.
    Le Losq C, Cody GD, Mysen BO. Complex IR spectra of OH− groups in silicate glasses: implications for the use of the 4500 cm−1 IR peak as a marker of OH- groups concentration. Am Miner. 2015;100(4):945–50.CrossRefGoogle Scholar
  43. 43.
    Valencia LB, Rogaume T, Guillaume E, Rein G, Torero JL. Analysis of principal gas products during combustion of polyether polyurethane foam at different irradiance levels. Fire Saf J. 2009;44(7):933–40.CrossRefGoogle Scholar
  44. 44.
    Dyer E, Newborn GE Jr. Thermal degradation of carbamates of methylenebis-(4-phenyl Isocyanate). J Am Chem Soc. 1958;80(20):5495–8.CrossRefGoogle Scholar
  45. 45.
    Tajima M, Niwa M, Fujii Y, Koinuma Y, Aizawa R, Kushiyama S, Kobayashi S, Mizuno K, Ohuˆchi H. Decomposition of chlorofluorocarbons in the presence of water over zeolite catalyst. Appl Catal B. 1996;9(1–4):167–77.CrossRefGoogle Scholar
  46. 46.
    Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska M. The influence of carbon fillers on the thermal properties of polyurethane foam. J Therm Anal Calorim. 2016;123(1):283–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.Guangzhou Institute of Energy Conversion, Chinese Academy of SciencesGuangzhouChina

Personalised recommendations