Advertisement

Effect of radiative source term on the behavior of nanomaterial with considering Lorentz forces

  • Tran Dinh Manh
  • Nguyen Dang Nam
  • Gihad Keyany Abdulrahman
  • Ahmad Shafee
  • M. Shamlooei
  • Houman BabazadehEmail author
  • Abdul Khader Jilani
  • I. Tlili
Article
  • 8 Downloads

Abstract

An in-house FORTRAN code was developed to analyze the hybrid powders migration within a porous domain which was in appearance of Lorentz force. The permeable 2D enclosure was full of nanomaterial, and properties were selected via empirical formulas. Results indicate that positive impact on Nuave can be obtained with rise of permeability which is related to greater temperature gradient. Also, similar impact exists for buoyancy force which shows the greater convective flow with rise of Ra. Reduction in temperature gradient with rise of Ha makes the convective flow to reduce.

Keywords

Nanomaterial Radiation Darcy Fortran Lorentz forces 

Notes

Acknowledgements

Dr. Abdul Khader Jilani would like to thank Deanship of Scientific Research at Majmaah University for supporting this paper under the Project Number No. R-1441-11.

References

  1. 1.
    Sheikholeslami M, Arabkoohsar A. Houman Babazadeh, modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08878-2.CrossRefGoogle Scholar
  2. 2.
    Sheikholeslami M, Barzegar Gerdroodbary M, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08858-6.CrossRefGoogle Scholar
  3. 3.
    Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019.  https://doi.org/10.1016/j.jclepro.2019.118235.CrossRefGoogle Scholar
  4. 4.
    Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08683-x.CrossRefGoogle Scholar
  5. 5.
    Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Khang Nguyen T. Nanoparticles for water desalination in solar heat exchanger: review. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08634-6.CrossRefGoogle Scholar
  6. 6.
    Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08235-3.CrossRefGoogle Scholar
  7. 7.
    Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08156-1.CrossRefGoogle Scholar
  8. 8.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-018-7866-7.CrossRefGoogle Scholar
  9. 9.
    Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.CrossRefGoogle Scholar
  10. 10.
    Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Nguyen TK. Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium: CVFEM modeling. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08501-4.CrossRefGoogle Scholar
  11. 11.
    Nguyen TK, Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Chandra Mouli KVV, Tlili I. Design of heat exchanger with combined turbulator. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08401-7.CrossRefGoogle Scholar
  12. 12.
    Li Z, Sheikholeslami M, Jafaryar M, Shafee A. Time dependent heat transfer simulation for NEPCM solidification inside a channel. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08140-9.CrossRefGoogle Scholar
  13. 13.
    Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.CrossRefGoogle Scholar
  14. 14.
    Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.CrossRefGoogle Scholar
  15. 15.
    Sheikholeslami M. Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl. 2018;30(4):1055–64.CrossRefGoogle Scholar
  16. 16.
    Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.CrossRefGoogle Scholar
  17. 17.
    Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.CrossRefGoogle Scholar
  18. 18.
    Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.CrossRefGoogle Scholar
  19. 19.
    Alkanhal TA, Sheikholeslami M, Usman M, Rizwan-ul Haq, Shafee A, Al-Ahmadi AS, Tlili I. Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source. Int J Heat Mass Transf. 2019;139:87–94.CrossRefGoogle Scholar
  20. 20.
    Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.CrossRefGoogle Scholar
  21. 21.
    Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.CrossRefGoogle Scholar
  22. 22.
    Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.CrossRefGoogle Scholar
  23. 23.
    Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-018-7901-8.CrossRefGoogle Scholar
  24. 24.
    Jafaryar M, Sheikholeslami M, LI Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23.  https://doi.org/10.1007/s10973-018-7093-2.CrossRefGoogle Scholar
  25. 25.
    Trang TNQ, Tu LTN, Man TV, Mathesh M, Thu VTH, Nam ND. A high-efficiency photoelectrochemistry of Cu2O/TiO2 nanotubes for hydrogen evolution under sunlight. Compos B Eng. 2019;174:106969.CrossRefGoogle Scholar
  26. 26.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Hydrothermal and second law behavior for charging of NEPCM in a two dimensional thermal storage unit. Chin J Phy. 2019;58:244–52.CrossRefGoogle Scholar
  27. 27.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure. Physica A. 2019;523:544–56.CrossRefGoogle Scholar
  28. 28.
    Vu NSH, Hien PV, Mathesh M, Thu VTH, Nam ND. Titania nanoparticles impregnated with complex organic molecules’ adsorption on steel surface in ethanol fuel blend. ACS Omega. 2019;4:146–58.CrossRefGoogle Scholar
  29. 29.
    Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.CrossRefGoogle Scholar
  30. 30.
    Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.CrossRefGoogle Scholar
  31. 31.
    Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput. 2017;298:272–82.Google Scholar
  32. 32.
    Sheikholeslami M, Shamlooei M. Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrogen Energy. 2017;42(9):5708–18.CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018.  https://doi.org/10.1063/1.5012517.CrossRefGoogle Scholar
  34. 34.
    Sheikholeslami M, Rokni HB. Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. J Mol Liq. 2017;232:390–5.CrossRefGoogle Scholar
  35. 35.
    Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.CrossRefGoogle Scholar
  36. 36.
    Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.CrossRefGoogle Scholar
  37. 37.
    Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.CrossRefGoogle Scholar
  38. 38.
    Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.CrossRefGoogle Scholar
  39. 39.
    Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.CrossRefGoogle Scholar
  40. 40.
    Sheikholeslami M, Rokni HB. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.CrossRefGoogle Scholar
  41. 41.
    Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.CrossRefGoogle Scholar
  42. 42.
    Javed T, Siddiqui MA. Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source. Int J ThermSci. 2018;125:419–27.CrossRefGoogle Scholar
  43. 43.
    Muthtamilselvan M, Periyadurai K, Doh DH. Effect of uniform and nonuniform heat source on natural convection flow of micropolar fluid. Int J Heat Mass Transf. 2017;115:19–34.CrossRefGoogle Scholar
  44. 44.
    Sheikholeslami M. Investigation of coulomb forces effects on ethylene glycol based nanofluid laminar flow in a porous enclosure. Appl Math Mech (Engl Ed). 2018;39(9):1341–52.CrossRefGoogle Scholar
  45. 45.
    Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.CrossRefGoogle Scholar
  46. 46.
    Sheikholeslami M. Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.CrossRefGoogle Scholar
  47. 47.
    Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.CrossRefGoogle Scholar
  48. 48.
    Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.CrossRefGoogle Scholar
  49. 49.
    Sheikholeslami M, Hayat T, Alsaedi A, Abelman S. Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. Int J Heat Mass Transf. 2017;108:2558–65.CrossRefGoogle Scholar
  50. 50.
    Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf. 2017;106:1261–9.CrossRefGoogle Scholar
  51. 51.
    Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Solar Energy. 2017;157(Supplement C):1047–55.CrossRefGoogle Scholar
  52. 52.
    Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156(Supplement C):218–24.CrossRefGoogle Scholar
  53. 53.
    Qin Y. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int J Heat Mass Transf. 2016;97:391–9.CrossRefGoogle Scholar
  54. 54.
    Sheikholeslami M, Shehzad SA. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf. 2017;109:82–92.CrossRefGoogle Scholar
  55. 55.
    Sheikholeslami M, Hayat T, Alsaedi A. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf. 2017;106:745–55.CrossRefGoogle Scholar
  56. 56.
    Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf. 2016;96:513–24.CrossRefGoogle Scholar
  57. 57.
    Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.CrossRefGoogle Scholar
  58. 58.
    Wang R, Sheikholeslami M, Mahmood BS, Shafee A, Nguyen-Thoi T. Simulation of triplex-tube heat storage including nanoparticles, solidification process. J Mol Liq. 2019.  https://doi.org/10.1016/j.molliq.2019.111731.CrossRefGoogle Scholar
  59. 59.
    Sheikholeslami M. Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng. 2015;37:1623–33.CrossRefGoogle Scholar
  60. 60.
    Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2019.  https://doi.org/10.1016/j.jclepro.2019.118888.CrossRefGoogle Scholar
  61. 61.
    Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.CrossRefGoogle Scholar
  62. 62.
    Qin Y, Liang J, Tan K, Li F. A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol Energy. 2016;133:172–9.CrossRefGoogle Scholar
  63. 63.
    Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.CrossRefGoogle Scholar
  64. 64.
    Nguyen TK, Usman M, Sheikholeslami M, Rizwan-ul Haq, Shafee A, Jilani AK, Tlili I. Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing non-equilibrium model. Physica A: Stat Mech Appl. 2020;537:122459.CrossRefGoogle Scholar
  65. 65.
    Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.CrossRefGoogle Scholar
  66. 66.
    Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.CrossRefGoogle Scholar
  67. 67.
    Qin Y, Zhang M, Mei G. A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol. 2018;562:725–32.CrossRefGoogle Scholar
  68. 68.
    Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq. 2017;229:137–47.CrossRefGoogle Scholar
  69. 69.
    Sheikholeslami M. Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A. 2017;381:494–503.CrossRefGoogle Scholar
  70. 70.
    Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq. 2017;225:903–12.CrossRefGoogle Scholar
  71. 71.
    Sheikholeslami M. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. Eur Phys J Plus. 2016;131:413.  https://doi.org/10.1140/epjp/i2016-16413-y.CrossRefGoogle Scholar
  72. 72.
    Sheikholeslami M. Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement. Int J Hydrogen Energy. 2017;42:821–9.CrossRefGoogle Scholar
  73. 73.
    Saravanan S, Sivaraj C. Combined natural convection and thermal radiation in a square cavity with a nonuniformly heated plate. Comput Fluids. 2015;117:125–38.CrossRefGoogle Scholar
  74. 74.
    Gangawane KM, Oztop HF, Abu-Hamdeh N. Mixed convection characteristic in a lid-driven cavity containing heated triangular block: effect of location and size of block. Int J Heat Mass Transf. 2018;124:860–75.CrossRefGoogle Scholar
  75. 75.
    Mehmood K, Hussain S, Sagheer M. Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: introduction. Int J Heat Mass Transf. 2017;109:397–409.CrossRefGoogle Scholar
  76. 76.
    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.CrossRefGoogle Scholar
  77. 77.
    Zhang X, Liu W. New criterion for local thermal equilibrium in porous media. J Thermophys Heat Transf. 2008;22:649–53.CrossRefGoogle Scholar
  78. 78.
    Kalidasan K, Velkennedy R, Kanna PR. Natural convection heat transfer enhance- ment using nanofluid and time-variant temperature on the square enclosure with diagonally constructed twin adiabatic blocks. Appl Therm Eng. 2016;92:219–35.CrossRefGoogle Scholar
  79. 79.
    Mahalakshmi T, Nithyadevi N, Oztop HF, Abu-Hamdeh N. Natural convective heat transfer of Ag–water nanofluid flow inside enclosure with center heater and bottom heat source. Chin J Phys. 2018;56:1497–507.CrossRefGoogle Scholar
  80. 80.
    Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.CrossRefGoogle Scholar
  81. 81.
    Qin Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015;96:86–94.CrossRefGoogle Scholar
  82. 82.
    Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.CrossRefGoogle Scholar
  83. 83.
    Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.CrossRefGoogle Scholar
  84. 84.
    Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.CrossRefGoogle Scholar
  85. 85.
    Sheikholeslami M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.CrossRefGoogle Scholar
  86. 86.
    Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.CrossRefGoogle Scholar
  87. 87.
    Sheikholeslami M. CuO–water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.CrossRefGoogle Scholar
  88. 88.
    Sheikholeslami M. Numerical investigation for CuO–H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.CrossRefGoogle Scholar
  89. 89.
    Sheikholeslami M. Numerical simulation for external magnetic field influence on Fe3O4–water nanofluid forced convection. Eng Comput. 2018;35(4):1639–54.  https://doi.org/10.1108/EC-06-2017-0200.CrossRefGoogle Scholar
  90. 90.
    Sheikholeslami M. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42:19611–21.CrossRefGoogle Scholar
  91. 91.
    Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cavity by means of non-Darcy model. Eng Comput. 2017;34(8):2651–67.  https://doi.org/10.1108/EC-01-2017-0008.CrossRefGoogle Scholar
  92. 92.
    Sheikholeslami M. Lattice Boltzmann method simulation of MHD non-Darcy nanofluid free convection. Phys B. 2017;516:55–71.CrossRefGoogle Scholar
  93. 93.
    Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of lattice Boltzmann method. J Mol Liq. 2017;234:364–74.CrossRefGoogle Scholar
  94. 94.
    Sheikholeslami M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using lattice Boltzmann method. J Mol Liq. 2017;231:555–65.CrossRefGoogle Scholar
  95. 95.
    Sheikholeslami M. CuO–water nanofluid free convection in a porous cavity considering Darcy law. Eur Phys J Plus. 2017;132:55.  https://doi.org/10.1140/epjp/i2017-11330-3.CrossRefGoogle Scholar
  96. 96.
    Sheikholeslami M. Numerical investigation of MHD nanofluid free convective heat transfer in a porous tilted enclosure. Eng Comput. 2017;34(6):1939–55.CrossRefGoogle Scholar
  97. 97.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Rizwan. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.CrossRefGoogle Scholar
  98. 98.
    Sheikholeslami M, Rizwan-ul Haq, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.CrossRefGoogle Scholar
  99. 99.
    Sheikholeslami M, Rizwan-ul Haq, Shafee A, Li Z. Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.CrossRefGoogle Scholar
  100. 100.
    Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.CrossRefGoogle Scholar
  101. 101.
    Soomro FA, Zaib A, Haq RU, Sheikholeslami M. Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach. Int J Heat Mass Transf. 2019;129:1242–9.CrossRefGoogle Scholar
  102. 102.
    Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.CrossRefGoogle Scholar
  103. 103.
    Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.CrossRefGoogle Scholar
  104. 104.
    Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.CrossRefGoogle Scholar
  105. 105.
    Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.CrossRefGoogle Scholar
  106. 106.
    Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.CrossRefGoogle Scholar
  107. 107.
    Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.CrossRefGoogle Scholar
  108. 108.
    Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.CrossRefGoogle Scholar
  109. 109.
    Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.CrossRefGoogle Scholar
  110. 110.
    Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and Pressure Drop during condensation of refrigerant-based nanofluid: an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.CrossRefGoogle Scholar
  111. 111.
    Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.CrossRefGoogle Scholar
  112. 112.
    Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.CrossRefGoogle Scholar
  113. 113.
    Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.CrossRefGoogle Scholar
  114. 114.
    Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.CrossRefGoogle Scholar
  115. 115.
    Nguyen DT, Dang LH, Dinh VT, Nam ND, Giang BL, Nguyen CT, Thanh VM, Thu LV, Tran QN. Dual interactions of amphiphilic gelatin copolymer and nanocurcumin enhancing the loading efficiency of the nanogels. Polymers. 2019;11:814.  https://doi.org/10.3390/polym11050814.CrossRefPubMedCentralPubMedGoogle Scholar
  116. 116.
    Sheikholeslami M, Sadoughi M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14.CrossRefGoogle Scholar
  117. 117.
    Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.CrossRefGoogle Scholar
  118. 118.
    Sheikholeslami M, Bhatti MM. Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf. 2017;109:115–22.CrossRefGoogle Scholar
  119. 119.
    Hedayat M, Sheikholeslami M, Shafee A, Nguyen-Thoi T, Ben Henda M, Tlili I, Li Z. Investigation of nanofluid conduction heat transfer within a triplex tube considering solidification. J Mol Liq. 2019;290:111232.CrossRefGoogle Scholar
  120. 120.
    Farshad SA, Sheikholeslami M. FVM modeling of nanofluid forced convection through a solar unit involving MCTT. Int J Mech Sci. 2019;159:126–39.CrossRefGoogle Scholar
  121. 121.
    Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.CrossRefGoogle Scholar
  122. 122.
    Nam ND. Improvement of mechanical properties and saline corrosion resistance of extruded Mg–8Gd–4Y–0.5Zr by alloying with 2 wt% Zn. J Alloys Compd. 2017;412:464–74.Google Scholar
  123. 123.
    Sheikholeslami M, Zareei A, Jafaryar M, Shafee A, Li Z, Smida A, Tlili I. Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel. Physica A: Stat Mech Appl. 2019;525:557–65.CrossRefGoogle Scholar
  124. 124.
    Le TNT, Ton NQT, Tran VM, Nam ND, Vu THT. TiO2 nanotubes with different Ag loading to enhance visible-light photocatalytic activity. J Nanomater. 2017;2017:1–7.CrossRefGoogle Scholar
  125. 125.
    Sivaraj C, Sheremet MA. MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J MagnMagn Mater. 2017;426:351–60.CrossRefGoogle Scholar
  126. 126.
    Yu W, Choi SUS. The role of interfacial layer in the enhanced thermal conductivity. ofnanofluids: a renovated Maxwell model. J Nanoparticle Res. 2003;5:167–71.CrossRefGoogle Scholar
  127. 127.
    Sheikholeslami M, Mehryan SAM, Shafee A, Mikhail A. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.CrossRefGoogle Scholar
  128. 128.
    Sheikholeslami M. Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer. Elsevier; (2019), ISBN: 9780128141526.Google Scholar
  129. 129.
    Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Tran Dinh Manh
    • 1
  • Nguyen Dang Nam
    • 1
  • Gihad Keyany Abdulrahman
    • 2
  • Ahmad Shafee
    • 3
  • M. Shamlooei
    • 4
  • Houman Babazadeh
    • 5
    • 6
    Email author
  • Abdul Khader Jilani
    • 7
  • I. Tlili
    • 8
  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangViet Nam
  2. 2.Department of Petroleum Engineering, College of EngineeringKnowledge UniversityArbīlIraq
  3. 3.College of Technological Studies, Applied Science DepartmentPublic Authority of Applied Education and TrainingShuwaikhKuwait
  4. 4.Department of Mechanical EngineeringBabol Noshirvani University of TechnologyBabolIslamic Republic of Iran
  5. 5.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  6. 6.Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Department of Computer Science, College of Computer and Information SciencesMajmaah UniversityAl-MajmaahSaudi Arabia
  8. 8.Department of Mechanical and Industrial Engineering, College of EngineeringMajmaah UniversityAl-MajmaahSaudi Arabia

Personalised recommendations