Advertisement

A numerical investigation on the influence of nanoadditive shape on the natural convection and entropy generation inside a rectangle-shaped finned concentric annulus filled with boehmite alumina nanofluid using two-phase mixture model

  • Amin Shahsavar
  • Milad Rashidi
  • Mostafa Monfared Mosghani
  • Davood Toghraie
  • Pouyan TalebizadehsardariEmail author
Article
  • 21 Downloads

Abstract

The goal of this work is to numerically study the hydrothermal and entropy generation specifications of boehmite alumina (γ-AlOOH) nanofluid flowing in a finned concentric annulus using the two-phase mixture model. Different shapes for the nanoadditives are examined including cylindrical, brick, blade, platelet and spherical. The impacts of nanoadditive shape and volume concentration \((\varphi )\), Rayleigh number \(({\text{Ra}})\) and application of fins on the streamlines, isotherms, Nusselt number as well as both the local and global rates of entropy generation due to the heat transfer and fluid friction are examined. The results indicated that the addition of fins and employing a higher \({\text{Ra}}\) and \(\varphi\) cause a higher average Nusselt number and generation rate of thermal entropy. Moreover, it was found that, except for \({\text{Ra}} = 10^{3}\), the generation rate of frictional entropy intensifies by utilizing fins. Moreover, the frictional entropy generation rate was enhanced using a higher \({\text{Ra}}\) and \(\varphi\). The results depicted that the impact of fins on the Nusselt number and entropy generation is not varied by the nanoadditive shape and concentration. Furthermore, it was concluded that the best nanoadditive shape is cylindrical and platelet, respectively, based on the first and the second laws of thermodynamics.

Keywords

Boehmite alumina nanofluid Nanoadditive shape Finned concentric annulus Natural convection Entropy generation 

List of symbols

\(C_{\text{p}}\)

Specific heat (J kg−1 K−1)

\(d\)

Diameter (m)

\(f_{\text{drag}}\)

Drag coefficient

\(g\)

Acceleration of gravity (m s−2)

\(\bar{h}\)

Average convection coefficient of inner wall (W m−2 K−1)

\(G_{\text{k}}\)

Rate of generation of turbulent kinetic energy (kg m−1 s−3)

\(k\)

Turbulent kinetic energy (m2 s−2)

\(\overline{\text{Nu}}\)

Average Nusselt number of inner wall

\(p\)

Pressure (Pa)

\(\dot{Q}\)

Heat transfer rate (W)

\({\text{Ra}}\)

Rayleigh number

\(\dot{S}_{\text{g,f}}^{'''}\)

Local entropy generation rate due to fluid friction (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{h}}}}^{'''}\)

Local entropy generation rate due to heat transfer (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{t}}}}^{'''}\)

Local total entropy generation rate (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{f}}}}\)

Global entropy generation rate due to fluid friction (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{h}}}}\)

Global entropy generation rate due to heat transfer (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{t}}}}\)

Global total entropy generation rate (W m−3 K−1)

\(T\)

Temperature (K)

\(V_{\text{dr}}\)

Drift velocity (m s−1)

\(V_{\text{m}}\)

Mixture velocity (m s−1)

\(V_{\text{pf}}\)

Relative velocity between a particle and fluid (m s−1)

Greek symbols

\(\varepsilon\)

Turbulent dissipation rate (m2 s−3)

λ

Thermal conductivity (W m−1 K−1)

\(\mu\)

Viscosity (kg m−1 s−1)

\(\mu_{\uptau}\)

Turbulent viscosity (kg m−1 s−1)

\(\rho\)

Density (kg m−3)

\(\varphi\)

Volume concentration

Subscripts

c

Cold

f

Base fluid

h

Hot

i

Inner wall

m

Mixture

o

Outer wall

p

Nanoadditive

Notes

References

  1. 1.
    Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a lid-driven cavity having a corrugated bottom wall and filled with a non-Newtonian power-law fluid under the influence of an inclined magnetic field. J Thermal Sci Eng Appl. 2016;8:021023.CrossRefGoogle Scholar
  2. 2.
    Selimefendigil F, Oztop HF. Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall. Int J Heat Mass Transf. 2017;110:231–47.CrossRefGoogle Scholar
  3. 3.
    Selimefendigil F, Oztop HF. Effects of nanoparticle shape on slot-jet impingement cooling of a corrugated surface with nanofluids. J Thermal Sci Eng Appl. 2017;9:021016.CrossRefGoogle Scholar
  4. 4.
    Selimefendigil F, Oztop HF. Conjugate mixed convection of nanofluid in a cubic enclosure separated with a conductive plate and having an inner rotating cylinder. Int J Heat Mass Transf. 2017;139:1000–17.CrossRefGoogle Scholar
  5. 5.
    Selimefendigil F, Oztop HF. Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall. J Thermal Sci Eng Appl. 2018;10:041003.CrossRefGoogle Scholar
  6. 6.
    Shahsavar A, Moradi M, Bahiraei M. Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus. J Taiwan Inst Chem Eng. 2018;84:149–61.CrossRefGoogle Scholar
  7. 7.
    Selimefendigil F, Oztop HF. Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field. Int J Mech Sci. 2019;152:185–97.CrossRefGoogle Scholar
  8. 8.
    Selimefendigil F, Oztop HF. MHD Pulsating forced convection of nanofluid over parallel plates with blocks in a channel. Int J Mech Sci. 2019;157–158:726–40.CrossRefGoogle Scholar
  9. 9.
    Shahsavar A, Talebizadeh P, Toghraie D. Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Meth Heat Fluid Flow. 2019;29:915–34.CrossRefGoogle Scholar
  10. 10.
    Shahsavar A, Godini A, Talebizadeh Sardari P, Toghraie D, Salehipour H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J Therm Anal Calorim. 2019;137:1031–43.CrossRefGoogle Scholar
  11. 11.
    Liu WI, Al-Rashed AAAA, Alsagri AS, Mahmoudi B, Shahsavar A, Afrand M. Laminar forced convection performance of non-Newtonian water-CNT/Fe3O4 nano-fluid inside a minichannel hairpin heat exchanger: effect of inlet temperature. Powder Technol. 2019;354:247–58.CrossRefGoogle Scholar
  12. 12.
    Shahsavar A, Rahimi Z, Salehipour H. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluid in a horizontal double-pipe minichannel heat exchanger. Heat Mass Transf. 2019;55:1741–51.CrossRefGoogle Scholar
  13. 13.
    Monfared M, Shahsavar A, Bahrebar MR. Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle. J Therm Anal Calorim. 2019;135:1521–32.CrossRefGoogle Scholar
  14. 14.
    Alsarraf J, Moradikazerouni A, Shahsavar A, Afrand M, Salehipour H, Tran MD. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Physica A. 2019;520:275–88.CrossRefGoogle Scholar
  15. 15.
    Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131:2975–91.CrossRefGoogle Scholar
  16. 16.
    Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131:1553–66.CrossRefGoogle Scholar
  17. 17.
    Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132:741–59.CrossRefGoogle Scholar
  18. 18.
    Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22.CrossRefGoogle Scholar
  19. 19.
    Gholami MR, Akbari OA, Marzban A, Toghraie D, Shabani GA, Zarringhalam M. The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J Therm Anal Calorim. 2017;134:1611–28.CrossRefGoogle Scholar
  20. 20.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.CrossRefGoogle Scholar
  21. 21.
    Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135:1145–59.CrossRefGoogle Scholar
  22. 22.
    Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135:981–1008.CrossRefGoogle Scholar
  23. 23.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.CrossRefGoogle Scholar
  24. 24.
    Esfe MH, Afrand M. A review on fuel cell types and the application of nanofluid in their cooling. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08837-x.CrossRefGoogle Scholar
  25. 25.
    Akram N, Sadri R, Kazi SN, Zubir MNM, Ridha M, Ahmed W, Soudagar MEM, Arzpeyma M. A comprehensive review on nanofluid operated solar flat plate collectors. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08514-z.CrossRefGoogle Scholar
  26. 26.
    Kuehn T, Goldstein R. Laminar natural convection in internally finned horizontal annuli. Numer Heat Transfer. 1993;24:67–87.CrossRefGoogle Scholar
  27. 27.
    Farinas MI, Garon A, Louis KS. Study of heat transfer in a horizontal cylinder with fins. Recent Adv Finite-Time Thermodyn. 1997;36:398–410.Google Scholar
  28. 28.
    Hsieh SS, Lin CC. An experimental study of laminar entrance flow and heat transfer in finned tube annuli. Int J Heat Mass Transf. 1993;36:2457–71.CrossRefGoogle Scholar
  29. 29.
    Iqbal Z, Syed KS, Ishaq M. Optimal convective heat transfer in double pipe with parabolic fins. Int J Heat Mass Transf. 2011;54:5415–26.CrossRefGoogle Scholar
  30. 30.
    Ishaq M, Syed KS, Iqbal Z, Hassan A, Ali A. DG-FEM based simulation of laminar convection in an annulus with triangular fins of different heights. Int J Therm Sci. 2013;72:125–46.CrossRefGoogle Scholar
  31. 31.
    Joye DCÔTÉAS. Heat transfer enhancement in annular channels with helical and longitudinal fins. Heat Transf Eng. 2007;16:29–34.CrossRefGoogle Scholar
  32. 32.
    Kumar R. Three-dimensional natural convective flow in a vertical annulus with longitudinal fins. Int J Heat Mass Transf. 1997;40:3323–34.CrossRefGoogle Scholar
  33. 33.
    Arbaban M, Salimpour MR. Enhancement of laminar natural convective heat transfer in concentric annuli with radial fins using nanofluids. Heat Mass Transfer. 2014.  https://doi.org/10.1007/s00231-014-1380-7.CrossRefGoogle Scholar
  34. 34.
    Sheikhzadeh GA, Arbaban M, Mehrabian MA. Laminar natural convection of Cu–water nanofluid in concentric annuli with radial fins attached to the inner cylinder. Heat Mass Transfer. 2013;49:391–403.CrossRefGoogle Scholar
  35. 35.
    Rahnama M, Farhadi M. Effect of radial fins on two-dimensional turbulent natural convection in a horizontal annulus. Int J Therm Sci. 2004;43:255–64.CrossRefGoogle Scholar
  36. 36.
    Syed KS, Iqbal Z, Ishaq M. Optimal configuration of finned annulus in a double pipe with fully developed laminar flow. Appl Therm Eng. 2011;31:1435–46.CrossRefGoogle Scholar
  37. 37.
    Syed KS, Ishaq M, Bakhsh M. Laminar convection in the annulus of a double-pipe with triangular fins. Comput Fluids. 2011;44:43–55.CrossRefGoogle Scholar
  38. 38.
    Jahanbakhshi A, Nadooshan AA, Shad A, Farzaneh M. Effects of fin presence and change the aspect ratio on natural convection in coaxial annuli. Modares Mech Eng. 2017;17:10–8.Google Scholar
  39. 39.
    Mahian O, Kianifar A, Zeinali Heris S, Wongwises S. First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: effects of nanoparticle shape and tube materials. Int J Heat Mass Transf. 2014;78:1166–76.CrossRefGoogle Scholar
  40. 40.
    Arani AAA, Sadripour S, Kermani S. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal-wavy mini-channel with phase shift and variable wavelength. Int J Mech Sci. 2017;128:550–63.CrossRefGoogle Scholar
  41. 41.
    Elias MM, Shahrul IM, Mahbubul IM, Saidur R, Rahim NA. Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int J Heat Mass Transf. 2014;70:289–97.CrossRefGoogle Scholar
  42. 42.
    Elias MM, Miqdad M, Mahbubul IM, Saidur R, Kamalisarvestani M, Sohel MR, Hepbasli A, Rahim NA, Amalina MA. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transfer. 2013;44:93–9.CrossRefGoogle Scholar
  43. 43.
    Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.CrossRefGoogle Scholar
  44. 44.
    Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. Technical Research Centre of Finland Finland. 1996.Google Scholar
  45. 45.
    Schiller L, Naumann A. A drag coefficient correlation. VDI Zeitung. 1935;77:51–60.Google Scholar
  46. 46.
    Kuhen TH, Goldstein RJ. An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J Fluid Mech. 1976;74:695–719.CrossRefGoogle Scholar
  47. 47.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790:1–48.CrossRefGoogle Scholar
  48. 48.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2019;791:1–59CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKermanshah University of TechnologyKermanshahIran
  2. 2.Malek Ashtar University of TechnologyShirazIran
  3. 3.Department of Mechanical Engineering, Khomeinishahr BranchIslamic Azad UniversityKhomeinishahrIran
  4. 4.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations