Advertisement

Thermal hazard evaluation of N-guanylurea dinitramide (GUDN) by using kinetic-based simulation approach

  • Chen Li
  • Fengguo MaEmail author
  • Jie Sun
  • Heliang Sui
  • Qian Yu
  • Lang Zhao
  • Ying YinEmail author
Article
  • 18 Downloads

Abstract

To promote the practical application of N-guanylurea dinitramide (GUDN), it is necessary to identify the thermal kinetics and evaluate thermal hazards of GUDN under various environmental conditions. In this study, we present that the thermal decomposition of GUDN is a typical autocatalytic reaction and the model-based kinetics was established by simultaneous fitting of a series of nonisothermal DSC data at different heating rates, which can be described as a generalized autocatalytic model, expressed as \(\frac{{{\text{d}}\alpha }}{{{\text{d}}t}} = 2.29 \times 10^{23} \exp \left( { - 225240/RT} \right)\left( {1 - \alpha } \right)^{1.76} \left( {\alpha^{1.47} + 0.59{\text{e}}^{ - 18300{\text{RT}}} } \right)\). The reaction model exhibits a reasonable fitting to the experimental results with a high correlation coefficient R2 of 0.9994. Based on the established kinetic model, important thermal safety indicators, such as the time to conversion limit, adiabatic time to maximum rate, and self-accelerating decomposition temperature, were simulated, providing important basis concerning the thermal hazard of GUDN in practical applications.

Keywords

GUDN Thermal kinetic model Thermal safety prediction 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21805260).

References

  1. 1.
    Nikita VM, Nobuyoshi K, Dmitry BM, Alla NP. Kinetics analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic process: thermolysis of ammonium dinitramide. Phys Chem Chem Phys. 2017;19:3254–64.CrossRefGoogle Scholar
  2. 2.
    Badgujar DM, Talawar M, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.CrossRefGoogle Scholar
  3. 3.
    Östmark H, Helte A, et al. N-guanylurea dinitramide (FOX-12): properties FOI-R–2312—SE; 2007.Google Scholar
  4. 4.
    Menke K, Eisel S, Gas generators and propellants based on guanylurea dinitramide with additional energetic components. DE102011100113A1; 2012.Google Scholar
  5. 5.
    Lei YP, Yang SQ, Xu SL, Zhang T. Progress in insensitive high energetic materials N-guanylurea-dinitramide. Hanneng Cailiao (Chin. J. Energ. Mater). 2007;15:289–93.Google Scholar
  6. 6.
    Bemm U, Östmark H, Bergman H, Langler A. Fox-12, A new energetic material with low sensitivity for propellants and explosive applications. In: Insentive munitions and energetic materials technology symposium; 1998.Google Scholar
  7. 7.
    Badgujar DM, Rashmi M, et al. Process optimization for synthesis of guanylurea dinitramide (GUDN). Propellants, Explos, Pyrotech. 2014;39:658–61.CrossRefGoogle Scholar
  8. 8.
    Östmark H, Bemm U, Bergman H, Langlet A. N-guanylurea-dinitramide: a new energetic material with low sensitivity for propellants and explosives applications. Thermochim Acta. 2002;384:253–9.CrossRefGoogle Scholar
  9. 9.
    Zhao FQ, Chen P, Yuan HA, et al. Thermochemical properties and non-isothermal decomposition reaction kinetics of N-guanylurea dinitramide (GUDN). Chin J Chem. 2004;22:136–41.CrossRefGoogle Scholar
  10. 10.
    Santhosh G, Soumyamol PB, Sreejith M, et al. Isoconversional approach for the non-isothermal decomposition kinetics of guanylurea dinitramide (GUDN). Thermochim Acta. 2016;632:46–51.CrossRefGoogle Scholar
  11. 11.
    Santhosh G, et al. Thermal decomposition kinetics of ammonium dinitramide-guanylurea dinitramide mixture analyzed by isoconversional methods. Thermochim Acta. 2008;480:43–8.CrossRefGoogle Scholar
  12. 12.
    Gao HX, Zhang H, Zhao FQ, et al. Kinetic behaviour of the exothermic decomposition reaction of N-guanylurea dinitramide. Acta Phys Chim Sin. 2008;24:453–8.Google Scholar
  13. 13.
    Benin AI, Kossoy AA, Sharikov FY. Automated system for kinetic research in thermal analysis. J Thermal Anal. 1992;38:1151–65.CrossRefGoogle Scholar
  14. 14.
    Kossoy AA, Benin A, Akhmetshin Y. An advanced approach to reactivity rating. J Hazard Mater. 2005;118:9–17.CrossRefGoogle Scholar
  15. 15.
    Zhao L, Yin Y, Sui HL, et al. Kinetic model of thermal decomposition of CL-20/HMX co-crystal for thermal safety prediction. Thermochim Acta. 2019;674:44–51.CrossRefGoogle Scholar
  16. 16.
    Wang SY, Kossoy AA, Yao YD, et al. Kinetics-based simulation approach to evaluate thermal hazards of benzaldehyde oxime by DSC tests. Thermochim Acta. 2017;655:319–25.CrossRefGoogle Scholar
  17. 17.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Plolym Sci Part C: Polym Symp. 1964;6:183–95.CrossRefGoogle Scholar
  18. 18.
    The website of the software manufacturer: www.cisp.spb.ru.
  19. 19.
    Fisher HG, Forrest HS, Grossel SS, et al. Emergency relief system design using DIERS technology-the design institute for emergency relief systems (DIERS), New York; 1992, pp. 285–393.Google Scholar
  20. 20.
    Kossoy AA, Singh J, Koludarova EY. Mathematical methods for application of experimental adiabatic data—an update and extension. J Loss Prev Process Ind. 2015;33:88–100.CrossRefGoogle Scholar
  21. 21.
    Niu H, Chen SS, Shu QH, et al. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate based polymer bonded explosive. J Hazard Mater. 2017;338:208–17.CrossRefGoogle Scholar
  22. 22.
    Kossoy AA, Belokhvostov VM, Koludarova EY. Thermal decomposition of AIBN, Part D: verification of simulation method for SADT determination based on AIBN benchmark. Thermochim Acta. 2015;621:36–43.CrossRefGoogle Scholar
  23. 23.
    Roudit B, Polly P, Berger B. Evaluating SADT by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93:153–61.CrossRefGoogle Scholar
  24. 24.
    Stoessel F. Thermal safety of chemical processes. Weinheim: Wiley; 2008. p. 270–82.CrossRefGoogle Scholar
  25. 25.
    Kossoy AA, Sheinman IY. Comparative analysis of the methods for SADT determination. J Hazard Mater. 2007;142:626–38.CrossRefGoogle Scholar
  26. 26.
    Rao GN, Feng W, Zhang J, et al. Simulation approach to decomposition kinetics and thermal hazards of hexamethylenetetramine. J Therm Anal Calorim. 2018;8:1–10.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Key Laboratory of Rubber-plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plasticsQingdao University of Science and TechnologyQingdaoChina
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations