Calculations of Avrami exponent and applicability of Johnson–Mehl–Avrami model on crystallization in Er:LiY(PO3)4 phosphate glass

  • Petra ZemenováEmail author
  • Robert Král
  • Miroslava Rodová
  • Karel Nitsch
  • Martin Nikl


Preparation and thermal properties of Er3+-doped lithium–yttrium meta-phosphate glasses with a nominal composition of Er:LiY(PO3)4 were studied as a new scintillating material for neutron detection. The glassy Er:LiY(PO3)4 ingots 10 × 10 × 25 mm3 in size were prepared by quenching of the molten mixture of the starting lithium carbonate, yttrium phosphate, and phosphorus oxide in stoichiometric relations. Crystallization kinetics was experimentally studied on powder samples with particle sizes ranging from 96 to 106 μm, 200 to 212 μm, and on bulk glassy samples using the non-isothermal differential scanning calorimetry. The evaluation of the measured data was performed using the Johnson–Mehl–Avrami, Matusita and Augis–Bennett models, and the y(α) and z(α) functions. In the case of the powder samples, the model analysis of the measured data showed that the crystallization mechanism was primarily performed through volume nucleation followed by 2D and 3D growth and in the bulk one by the surface and volume nucleation with 1D growth. Obtained kinetic parameters were used for reconstruction of the crystallization peaks using various models and compared with actual experimental data.


Phosphate glass Nucleation Crystallization Non-isothermal DSC Avrami exponent Johnson–Mehl–Avrami y(α) and z(α) functions 



Partial support of the projects from the Ministry of Education, Youth and Sports of the Czech Republic no. LO1409, LM2015088 and CZ.02.1.01/0.0/0.0/16_013/0001406 is gratefully acknowledged. The authors would like to thank Mr. A. Cihlář for glass preparation and the Optical Laboratory of the Institute of Physics for bulk sample polishing.


  1. 1.
    Zemenová P, Král R, Nitsch K, Knížek K, Cihlář A, Bystřický A. Characterization and crystallization kinetics of Er-doped Li2O–Y2O3–P2O5 glass studied by non-isothermal DSC analysis. J Therm Anal Calorim. 2016;125(3):1431–7.CrossRefGoogle Scholar
  2. 2.
    Málek J, Mitsuhashi T. Testing method for the Johnson–Mehl–Avrami equation in kinetic analysis of crystallization processes. J Am Ceram Soc. 2000;83(8):2103–5.CrossRefGoogle Scholar
  3. 3.
    Holubová J, Černošek Z, Černošková E, Černá A. Crystallization of supercooled liquid of selenium: the comparison of kinetic analysis of both isothermal and non-isothermal DSC data. Mater Lett. 2006;60:2429–32.CrossRefGoogle Scholar
  4. 4.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1):163–76.CrossRefGoogle Scholar
  5. 5.
    Mehta N, Kumar A. A study of thermal crystallization in glassy Se80Te20 and Se80In20 using DSC technique. J Therm Anal Calorim. 2006;83:401–5.CrossRefGoogle Scholar
  6. 6.
    Dohare C, Mehta N. Iso-conversional analysis of glass transition and crystallization in as-synthesis high yield of glassy Se98Cd2 nanorods. Appl Nanosci. 2013;3:271–80.CrossRefGoogle Scholar
  7. 7.
    Mahavedan S, Giridhar A, Sing AK. Calorimetric measurements on As-Sb-Se glasses. J Non-Cryst Solids. 1986;88:11–34.CrossRefGoogle Scholar
  8. 8.
    Arora A, Shaaban ER, Singh K, Pandey OP. Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. J Non-Cryst Solids. 2008;354(33):3944–51.CrossRefGoogle Scholar
  9. 9.
    Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54(3):253–75.CrossRefGoogle Scholar
  10. 10.
    Henderson DW. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids. 1979;30(3):301–15.CrossRefGoogle Scholar
  11. 11.
    Málek J, Černošková E, Švejka R, Šesták J, Van der Plaats G. Crystallization kinetics of Ge0.3Sb1.4S2.7 glass. Thermochim Acta. 1996;280/281:353–61.CrossRefGoogle Scholar
  12. 12.
    Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  13. 13.
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  14. 14.
    Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.CrossRefGoogle Scholar
  15. 15.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.CrossRefGoogle Scholar
  16. 16.
    Karamanov A, Avramov I, Arrizza L, Pascova R, Gutzow I. Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes. J Non-Cryst Solids. 2012;358:1486–90.CrossRefGoogle Scholar
  17. 17.
    Málek J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.CrossRefGoogle Scholar
  18. 18.
    Málek J. Crystallization kinetics by thermal analysis. J Therm Anal Calorim. 1999;56:763–9.CrossRefGoogle Scholar
  19. 19.
    Šatava V. Mechanism and kinetics from non-isothermal TG traces. Thermochim Acta. 1971;2:423–8.CrossRefGoogle Scholar
  20. 20.
    Abdel-Rahim MA, Hafiz MM, Mahmoud AZ. Crystallization kinetics of overlapping phases in Se70Te15Sb15 using isoconversional methods. Prog Nat Sci Mater Int. 2015;25:169–77.CrossRefGoogle Scholar
  21. 21.
    Yan Z, Dang S, Wang X, Lian P. Applicability of Johnson–Mehl–Avrami model to crystallization kinetics of Zr60Al15Ni25 bulk amorphous alloy. Trans Nonferrous Met Soc China. 2008;18:138–44.CrossRefGoogle Scholar
  22. 22.
    Heireche L, Heireche M, Belhadji M. Kinetic study of nonisothermal crystallization in Se90-xZn10Sbx (x = 0, 2, 4, 6) chalcogenide glasses. J Cryst Process Technol. 2014;4(2):111–20.CrossRefGoogle Scholar
  23. 23.
    Joraid AA. Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim Acta. 2005;436:78–82.CrossRefGoogle Scholar
  24. 24.
    Svoboda R, Málek J. Extended study of crystallization kinetics for Se–Te glasses. J Therm Anal Calorim. 2013;111:161–71.CrossRefGoogle Scholar
  25. 25.
    Amami J, Férid M, Trabelsi-Ayedi M. Crystal structure and spectroscopic studies of NaGd(PO3)4. Mater Res Bull. 2005;40:2144–52.CrossRefGoogle Scholar
  26. 26.
    Nitsch K, Rodová M. Crystallization study of Na–Gd phosphate glass using non-isothermal DTA. J Therm Anal Calorim. 2008;91:137–40.CrossRefGoogle Scholar
  27. 27.
    Pilný P. OriTas program—solution for kinetic analysis of thermoanalytical data. 2013.; Accessed 28 Dec 2017.
  28. 28.
    Ray CS, Huang W, Day DE. Crystallization kinetics of a lithia–silica glass: effect of sample characteristics and thermal analysis measurement techniques. J Am Ceram Soc. 1991;74(1):60–6.CrossRefGoogle Scholar
  29. 29.
    Tanaka K. Structural phase transitions in chalcogenide glasses. Phys Rev B. 1989;39:1270–9.CrossRefGoogle Scholar
  30. 30.
    Brown ME. Some proposals for publication of kinetics papers. J Therm Anal Calorim. 2005;80:796–7.Google Scholar
  31. 31.
    Pustková P, Zmrhalová Z, Málek J. The particle size influence on crystallization kinetics of (GeS2)0.1(Sb2S3)0.9 glass. Thermochim Acta. 2007;466:13–21.CrossRefGoogle Scholar
  32. 32.
    Svoboda R, Málek J. Particle size influence on crystallization behavior of Ge2Sb2Se5 glass. J Non-Cryst Solids. 2012;358:276–84.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Physics of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations