Crystallization kinetics, morphology and spherulite growth in poly(trimethylene terephthalate) modified with bisphenol-A diglycidyl ether

  • C. SarathchandranEmail author
  • Li Ziang
  • Robert A. Shanks
  • C. H. Chan
  • V. Sekkar
  • Sabu Thomas


The role of bisphenol-A diglycidyl ether (BADGE)—a weakly interacting, low molecular weight additive on crystallization kinetics, morphology and spherulite growth of semi-crystalline thermoplastic- poly(trimethylene terephthalate) (PTT) is quantitatively evaluated. Blends of PTT with different loadings of BADGE were prepared by melt blending. Weak secondary interactions between BADGE and PTT influenced the crystallization kinetics of PTT. This gives rise to concentration-dependent changes in spherulite morphology, crystallization kinetics and stereochemical conformation of PTT. BADGE behaved as a nucleating agent/plasticizer for PTT depending on its loading and changed the conformational distribution of PTT thereby facilitating chain mobility, along with diffusion and attachment of chain segments to crystal nuclei and growth faces. Crystallization kinetics and glass transition studies were carried out using differential scanning calorimetry, while spherulite growth rate was followed using polarized optical microscope equipped with hot stage, and the microphase structure evaluated using small-angle X-ray scattering studies.


Crystallization kinetics Morphology development Dynamic asymmetry in polymer blends Avrami model 


Supplementary material

10973_2019_9047_MOESM1_ESM.docx (214 kb)
Supplementary material 1 (DOCX 213 kb)


  1. 1.
    Men Y, Rieger J, Strobl G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys Rev Lett. 2003;91:095502.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Karger-Kocsis J. How does “phase transformation toughening” work in semicrystalline polymers? Polym Eng Sci. 1996;36:203–10.CrossRefGoogle Scholar
  3. 3.
    Nguyen TL, Choi H, Ko S-J, Uddin MA, Walker B, Yum S, et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ~ 300 nm thick conventional single-cell device. Energy Environ Sci. 2014;7:3040–51.CrossRefGoogle Scholar
  4. 4.
    Mu Y, Zhao G, Chen A, Li S. Modeling and simulation of morphology variation during the solidification of polymer melts with amorphous and semi-crystalline phases. Polym Adv Technol. 2014;25:1471–83.CrossRefGoogle Scholar
  5. 5.
    Semicrystalline polymers. Electron microscopy of polymers (Internet). Berlin: Springer; 2008. p. 295–327.Google Scholar
  6. 6.
    van Krevelen DW, Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from Additive Group Contributions. Amsterdam: Elsevier; 2009.CrossRefGoogle Scholar
  7. 7.
    Yamamoto T. Computer modeling of polymer crystallization—toward computer-assisted materials’ design. Polymer. 2009;50:1975–85.CrossRefGoogle Scholar
  8. 8.
    Mandelkern L. Crystallization of polymers. Cambridge: Cambridge University Press; 2002.CrossRefGoogle Scholar
  9. 9.
    Rastogi S, Lippits DR, Peters GWM, Spiess HW. Heterogenity in polymer melts from melting of polymer crystals. Nat Mater. 2005;4:635.PubMedCrossRefGoogle Scholar
  10. 10.
    Dasmahapatra AK, Nanavati H, Kumaraswamy G. Polymer crystallization in the presence of “sticky” additives. J Chem Phys. 2009;131:074905.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Strawhecker KE, Manias E. Structure and properties of poly(vinyl alcohol)/Na + montmorillonite nanocomposites. Chem Mater. 2000;12:2943–9.CrossRefGoogle Scholar
  12. 12.
    Crosby AJ, Lee J-Y. Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev. 2007;47:217–29.CrossRefGoogle Scholar
  13. 13.
    Cabedo L, Luis Feijoo J, Pilar Villanueva M, Lagarón JM, Giménez E. Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol Symp. 2006;233:191–7.CrossRefGoogle Scholar
  14. 14.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci. 2011;36:638–70.CrossRefGoogle Scholar
  15. 15.
    Rao PJM. Mechanics of polymer–clay nanocomposites. Macromolecules. 2007;40:290–6.CrossRefGoogle Scholar
  16. 16.
    Chan CH, Thomas S. Poly (trimethylene terephthalate)—the new generation of engineering thermoplastic polyester. Rijeka: InTech; 2012.CrossRefGoogle Scholar
  17. 17.
    Chuah HH. Orientation and structure development in poly(trimethylene terephthalate) tensile drawing. Macromolecules. 2001;34:6985–93.CrossRefGoogle Scholar
  18. 18.
    Desborough IJ, Hall IH, Neisser JZ. The structure of poly(trimethylene terephthalate). Polymer. 1979;20:545–52.CrossRefGoogle Scholar
  19. 19.
    Chuah HH. Poly(trimethylene terephthalate). In: Mark HF, editor. Encyclopedia of polymer science and technology. Hoboken: Wiley; 2002.Google Scholar
  20. 20.
    Utracki LA. Glass transition temperature in polymer blends. Adv Polym Technol. 1985;5:33–9.CrossRefGoogle Scholar
  21. 21.
    Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A. Prediction of glass transition temperatures: binary blends and copolymers. Mater Lett. 2008;62:3152–5.CrossRefGoogle Scholar
  22. 22.
    Aubin M, Prud’homme RE. Analysis of the glass transition temperature of miscible polymer blends. Macromolecules. 1988;21:2945–9.CrossRefGoogle Scholar
  23. 23.
    Nandi AK, Mandal BM, Bhattacharyya SN, Roy SK. On the occurrence of cusps in the Tg-composition diagrams of compatible polymer pairs. Polym Commun. 1986;27:151–4.Google Scholar
  24. 24.
    Roy SK, Brown GR, St-pierre LE. The influence of thermodynamic interactions on the glass transition of poly (vinyl chloride)-benzylbutylphthalate mixtures. Int J Polym Mater Polym Biomater. 1983;10:13–20.CrossRefGoogle Scholar
  25. 25.
    Srimoaon P, Dangseeyun N, Supaphol P. Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). Eur Polym J. 2004;40:599–608.CrossRefGoogle Scholar
  26. 26.
    Marand H, Xu J, Srinivas S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-weeks extrapolations. Macromolecules. 1998;31:8219–29.CrossRefGoogle Scholar
  27. 27.
    Rostami SD. Advances in theory of equilibrium melting point depression in miscible polymer blends. Eur Polym J. 2000;36:2285–90.CrossRefGoogle Scholar
  28. 28.
    Rim PB, Runt JP. Melting point depression in crystalline/compatible polymer blends. Macromolecules. 1984;17:1520–6.CrossRefGoogle Scholar
  29. 29.
    Avrami M. Kinetics of phase change. I. general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  30. 30.
    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.CrossRefGoogle Scholar
  31. 31.
    Hong P-D, Chung W-T, Hsu C-F. Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer. 2002;43:3335–43.CrossRefGoogle Scholar
  32. 32.
    Grenier D, Prud Homme RE. Avrami analysis: three experimental limiting factors. J Polym Sci Polym Phys Ed. 1980;18:1655–7.CrossRefGoogle Scholar
  33. 33.
    Zhang Q-X, Yu Z-Z, Xie X-L, Mai Y-W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45:5985–94.CrossRefGoogle Scholar
  34. 34.
    Agrawal H, Awasthib K, Saraswata VK. Crystallization activation energy of polyethylene terepthalate (PET) and its ZnO/TiO2 nanocomposites. Res Rev J Pure Appl Phys. 2014;2:17–21.Google Scholar
  35. 35.
    Shiomi T, Tsukada H, Takeshita H, Takenaka K, Tezuka Y. Crystallization of semi-crystalline block copolymers containing a glassy amorphous component. Polymer. 2001;42:4997–5004.CrossRefGoogle Scholar
  36. 36.
    Guan G, Li C, Yuan X, Xiao Y, Liu X, Zhang D. New insight into the crystallization behavior of poly(ethylene terephthalate)/clay nanocomposites. J Polym Sci, Part B: Polym Phys. 2008;46:2380–94.CrossRefGoogle Scholar
  37. 37.
    Mote VD, Purushotham Y, Dole BN. Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys. 2012;6:6.CrossRefGoogle Scholar
  38. 38.
    Zak AK, et al. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size-strain plot methods. Solid State Sci. 2013;13:251–6.Google Scholar
  39. 39.
    Li Z. A program for SAXS data processing and analysis. Chin Phys C. 2013;37:108002.CrossRefGoogle Scholar
  40. 40.
    Goderis B, Reynaers H, Koch MHJ, Mathot VBF. Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene. J Polym Sci, Part B: Polym Phys. 1999;37:1715–38.CrossRefGoogle Scholar
  41. 41.
    Brown DS, Fulcher KU, Wetton RE. Application of small angle X-ray scattering to semi- crystalline polymers: 1. Experimental considerations and analysis of data. Polymer. 1973;14:379–83.CrossRefGoogle Scholar
  42. 42.
    Fischer S, Jiang Z, Men Y. Analysis of the lamellar structure of semi-crystalline polymers by direct model fitting of SAXS patterns. J Phys Chem B. 2011;115:13803–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Richardson PH, Richards RW, Blundell DJ, MacDonald WA, Mills P. Differential scanning calorimetry and optical microscopy investigations of the isothermal crystallization of a poly(ethylene oxide)-poly(methyl methacrylate) block copolymer. Polymer. 1995;36:3059–69.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of SciencesAmrita School of Engineering, Amrita Vishwa VidyapeethamChennaiIndia
  2. 2.School of ScienceRMIT UniversityMelbourneAustralia
  3. 3.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Faculty of Applied SciencesUniversity Teknologi MARAShah AlamMalaysia
  5. 5.Centre for Environmental SciencesCochin University of Science and TechnologyCochinIndia
  6. 6.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations