Experimental investigation of the particle size effect on heat transfer coefficient of Al2O3 nanofluid in a cylindrical microchannel heat sink

  • A. Heidarshenas
  • Z. AziziEmail author
  • S. M. Peyghambarzadeh
  • S. Sayyahi


Having the ability to remove high heat flux from the environment, the microchannel heat sinks cooled by nanofluids have been the subject of many researches on different aspects of nanofluid characteristics and microchannel geometry. In this work, convective heat transfer coefficient was investigated using water-based Al2O3 nanofluid as the working fluid in a cylindrical microchannel heat sink. The experiments performed at different particle sizes (20, 50, 80 and 135 nm), different flow rates and constant heat flux. This microchannel consisted of 48 parallel channels with a rectangular cross section, and each one had a width of 524 μm, a height of 800 μm, a length of 52 mm and a hydraulic diameter of 632 μm. Ultrasonic irradiation was used to provide the stability of the nanofluid followed by zeta potential measurements. Experimental results showed that increasing the particle size decreased the convective heat transfer coefficient. At constant Reynolds number, the convective heat transfer coefficient increased at all the particle sizes except 135 nm, at which the Nusselt number decreased by 8.5%. An enhancement of 21.9%, 21.1% and 18.7% in Nu was observed for 20, 50 and 80 nm, respectively. Moreover, a correlation considering the effect of nanoparticle size on the Nu number was proposed which could predict the experimental data with an average error of 5.26%.


Convective heat transfer coefficient Microchannel heat sink Nanoparticle size Nusselt number Experimental correlation 

List of symbols


Area (m2)


Dimensionless number = (Dh/d)


Specific heat capacity at constant pressure (J kg−1 K−1)


Hydraulic diameter (m)


Size of nanoparticle (m)


Height (m)


Heat translate coefficient


Convective heat transfer coefficient (W m−2 K−1)


Thermal conductivity (W m−1 K−1)


Microchannel length (m)


Mass flow rate (kg s−1)


Number of microchannels


Nusselt number = (h.Dh/k)






Prandtl number = (Cpµ/k)


Pressure drop (Pa)


Power (W)


Heat flux (W m−2)


Thermal resistance (K W−1)


Reynolds number = (ρ.u.Dh/μ)


Radial distance (m)


Temperature (K)


Fluid velocity (m s−1)


Width (m)


Axial distance from inlet (m)


Dimensionless length

Greek symbols


Viscosity (kg ms−1)


Fin efficiency


Density (kg m−3)


Volume fraction







Base fluid




Cross section

































  1. 1.
    Wu Z, Sunden B. On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels. Renew Sustain Energy Rev. 2014;40:11–27.CrossRefGoogle Scholar
  2. 2.
    Hussien AA, Abdullah MZ, Mohd AA-N. Single-phase heat transfer enhancement in micro/minichannels using nanofluids. Theory Appl. 2016;164:733–55.Google Scholar
  3. 3.
    Wu J, Zhao J, Lei J, Liu B. Effectiveness of nanofluid on improving the performance of microchannel heat sink. Appl Therm Eng. 2016;101:402–12.CrossRefGoogle Scholar
  4. 4.
    Ho C, Chen W. An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Appl Therm Eng. 2013;50(1):516–22.CrossRefGoogle Scholar
  5. 5.
    Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):153107.CrossRefGoogle Scholar
  6. 6.
    Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88(9):093116.CrossRefGoogle Scholar
  7. 7.
    Haddad Z, Abu-Nada E, Oztop HF, Mataoui A. Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int J Therm Sci. 2012;57:152–62.CrossRefGoogle Scholar
  8. 8.
    Jang SP, Choi SU. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.CrossRefGoogle Scholar
  9. 9.
    Prasher R, Bhattacharya P, Phelan PE. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf. 2006;128(6):588–95.CrossRefGoogle Scholar
  10. 10.
    Sarkar S, Selvam RP. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys. 2007;102(7):074302.CrossRefGoogle Scholar
  11. 11.
    Shima P, Philip J, Raj B. Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett. 2009;94(22):223101.CrossRefGoogle Scholar
  12. 12.
    Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng. 2015;283:651–63.CrossRefGoogle Scholar
  13. 13.
    Sheikholeslami M, Gorji-Bandpy M, Ganji D, Rana P, Soleimani S. Magnetohydrodynamic free convection of Al2O3–water nanofluid considering thermophoresis and Brownian motion effects. Comput Fluids. 2014;94:147–60.CrossRefGoogle Scholar
  14. 14.
    Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002;91(7):4568–72.CrossRefGoogle Scholar
  15. 15.
    Pantzali M, Mouza A, Paras S. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Eng Sci. 2009;64(14):3290–300.CrossRefGoogle Scholar
  16. 16.
    Hung Y-H, Teng T-P, Teng T-C, Chen J-H. Assessment of heat dissipation performance for nanofluid. Appl Therm Eng. 2012;32:132–40.CrossRefGoogle Scholar
  17. 17.
    Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. Int J Therm Sci. 2009;48(8):1486–93.CrossRefGoogle Scholar
  18. 18.
    Lee S, Choi S-S, Li S, Eastman J. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.CrossRefGoogle Scholar
  19. 19.
    Ganvir R, Walke P, Kriplani VJR, Reviews SE. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2017;75:451–60.CrossRefGoogle Scholar
  20. 20.
    Azizi A, Alamdari A, Doroodmand MM (2018) Highly stable copper/carbon dot nanofluid. J Therm Anal Calorim. 2018;133(2):951–60.CrossRefGoogle Scholar
  21. 21.
    Torabipoor O, Azizi Z. Experimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink. Transp Phenom Nano Micro Scales. 2018;6:37–43.Google Scholar
  22. 22.
    Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.CrossRefGoogle Scholar
  23. 23.
    Peyghambarzadeh S, Hashemabadi S, Hoseini S, Jamnani MS. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int Commun Heat Mass Transf. 2011;38(9):1283–90.CrossRefGoogle Scholar
  24. 24.
    Peyghambarzadeh S, Hashemabadi S, Chabi A, Salimi M. Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Convers Manag. 2014;86:28–38.CrossRefGoogle Scholar
  25. 25.
    Peyghambarzadeh S, Hashemabadi S, Jamnani MS, Hoseini SM. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Appl Therm Eng. 2011;31(10):1833–8.CrossRefGoogle Scholar
  26. 26.
    Naraki M, Peyghambarzadeh S, Hashemabadi S, Vermahmoudi Y. Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int J Therm Sci. 2013;66:82–90.CrossRefGoogle Scholar
  27. 27.
    Azizi Z, Alamdari A, Malayeri M. Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu-water nanofluid. Appl Therm Eng. 2016;99:970–8.CrossRefGoogle Scholar
  28. 28.
    Azizi Z, Alamdari A, Malayeri M. Convective heat transfer of Cu–water nanofluid in a cylindrical microchannel heat sink. Energy Convers Manag. 2015;101:515–24.CrossRefGoogle Scholar
  29. 29.
    Tafarroj MM, Mahian O, Kasaeian A, Sakamatapan K, Dalkilic AS, Wongwises S. Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data. Int Commun Heat Mass Transf. 2017;86:25–31.CrossRefGoogle Scholar
  30. 30.
    Chamkha AJ, Molana M, Rahnama A, Ghadami F. On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 2018;332:287–322.CrossRefGoogle Scholar
  31. 31.
    Ramezanizadeh M, Nazari MA, Ahmadi MH, Açıkkalp E. Application of nanofluids in thermosyphons: a review. J Mol Liq. 2018;272:395–402.CrossRefGoogle Scholar
  32. 32.
    Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2018;343:880–907.CrossRefGoogle Scholar
  33. 33.
    Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: a critical review. Energy Convers Manag. 2018;172:438–56.CrossRefGoogle Scholar
  34. 34.
    Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007;27(8–9):1501–6.CrossRefGoogle Scholar
  35. 35.
    Noop K, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf. 2009;52(9–10):2189–95.Google Scholar
  36. 36.
    He Y, Jin Y, Chen H, Ding Y, Cang D, Lu HJ, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50(11–12):2272–81.CrossRefGoogle Scholar
  37. 37.
    Kokate Y, Sonawane S, editors. Investigation of particle size effect on thermal conductivity enhancement of distilled water–Al2O3 nanofluids. In ICTEA: International conference on thermal engineering; 2019.Google Scholar
  38. 38.
    Coleman HW, Steele WG. Experimentation, validation, and uncertainty analysis for engineers. Hoboken: Wiley; 2018.CrossRefGoogle Scholar
  39. 39.
    Freidoonimehr N, Rahimi AB. Brownian motion effect on heat transfer of a three-dimensional nanofluid flow over a stretched sheet with velocity slip. J Therm Anal Calorim. 2019;135(1):207–22.CrossRefGoogle Scholar
  40. 40.
    Pal D, Roy N. Influence of Brownian motion and thermal radiation on heat transfer of a nanofluid over stretching sheet with slip velocity. Int J Appl Comput Math. 2017;3(4):3355–77.CrossRefGoogle Scholar
  41. 41.
    Shakiba A, Rahimi AB. Nanofluid flow and MHD mixed convection inside a vertical annulus with moving walls and transpiration considering the effect of Brownian motion and shape factor. J Therm Anal Calorim. 2019;138:501–15.CrossRefGoogle Scholar
  42. 42.
    Shahriari A, Javaran EJ, Rahnama M. Effect of nanoparticles Brownian motion and uniform sinusoidal roughness elements on natural convection in an enclosure. J Therm Anal Calorim. 2018;131(3):2865–84.CrossRefGoogle Scholar
  43. 43.
    Das AK, Chatterjee S. Analysis of thermophoresis and Brownian motion effect in heat transfer for nanofluid immersed distribution transformer. Electr Eng. 2018;100(3):1963–74.CrossRefGoogle Scholar
  44. 44.
    Matin MH, Ghanbari B. Effects of Brownian motion and thermophoresis on the mixed convection of nanofluid in a porous channel including flow reversal. Transp Porous Media. 2014;101(1):115–36.CrossRefGoogle Scholar
  45. 45.
    Bouazizi L, Turki S. Effect of Brownian motion on flow and heat transfer of nanofluids over a backward-facing step with and without adiabatic square cylinder. Thermophys Aeromech. 2018;25(3):445–60.CrossRefGoogle Scholar
  46. 46.
    Wu J, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog Nucl Energy. 2013;66:13–24.CrossRefGoogle Scholar
  47. 47.
    Ye Y, Pui D, Liu B, Opiolka S, Blumhorst S, Fissan H. Thermophoretic effect of particle deposition on a free standing semiconductor wafer in a clean room. J Aerosol Sci. 1991;22(1):63–72.CrossRefGoogle Scholar
  48. 48.
    Beal SK. Deposition of particles in turbulent flow on channel or pipe walls. Nucl Sci Eng. 1970;40(1):1–11.CrossRefGoogle Scholar
  49. 49.
    Ghaffari O, Behzadmehr A. Investigation of the effect of nanoparticles mean diameter on turbulent mixed convection of a nanofluid in a horizontal curved tube using a two phase approach. Transp Phenom Nano Micro Scales. 2013;1(1):64–74.Google Scholar
  50. 50.
    Chabi A, Zarrinabadi S, Peyghambarzadeh S, Hashemabadi S, Salimi M. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink. Heat Mass Transf. 2017;53(2):661–71.CrossRefGoogle Scholar
  51. 51.
    Mirzaei M, Dehghan M. Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat Mass Transf. 2013;49(12):1803–11.CrossRefGoogle Scholar
  52. 52.
    Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev. 2011;15(6):3271–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Mahshahr BranchIslamic Azad UniversityMahshahrIran
  2. 2.Department of Chemistry, Mahshahr BranchIslamic Azad UniversityMahshahrIran

Personalised recommendations