Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid

  • Hadi Davari
  • Hamid Reza GoshayeshiEmail author
  • Hakan F. Öztop
  • Issa Chaer


This paper presents a novel study on the performance of closed-loop oscillating heat pipe (CLOHP) using iron oxide (Fe3O4) as the working fluid for three types of condensers. The tested CLOHP consists of six turns made of copper tubes, 4.5 mm outer diameter and 3 mm inner diameter with heating power input in a range of 0–200 W. The experimental results showed that the thermal performance of the CLOHPs has been improved when the corrugated horizontal condenser was used compare to straight and corrugated vertical condensers. Based on 800 sets of available experimental data, the results show that the CLOHPs with corrugated horizontal condenser had better thermal performance when charged with Fe3O4/water at 2% mass concentration.


Oscillating heat pipe Heat resistant Thermal efficiency Nanofluid Corrugated horizontal condenser 

List of symbols


Area (m2)


Diameter (mm)


Electric current (A)


Electrical voltage (V)


Heat flux (W m−2 K−1)


Heating power (W)


Heat transfer coefficient (W m−2 K−1)


Length (m)


Temperature (K)


Thermal resistance (KW-1)


Efficiency (%)

Greek symbols




Density (kg m−3)


















  1. 1.
    Akachi H, Polášek F, Štulc P. Pulsating heat pipes. In: Proceeding of the 5th international heat pipe symposium, Melbourne, Australia. 1996; pp. 208–217.Google Scholar
  2. 2.
    Sun Q, Qu J, Li X, Yuan J. Experimental investigation of thermo-hydrodynamic behavior in a closed loop oscillating heat pipe. Exp Therm Fluid Sci. 2017;82:450–8.CrossRefGoogle Scholar
  3. 3.
    Taft BS, Rhodes M. Experimental investigation of oscillating heat pipes under direct current and pulse width modulation heating input conditions. Appl Therm Eng. 2017;126:1018–22.CrossRefGoogle Scholar
  4. 4.
    Qu J, Li X, Cui Y, Wang Q. Design and experimental study on a hybrid flexible oscillating heat pipe. Int J Heat Mass Transf. 2017;107:640–5.CrossRefGoogle Scholar
  5. 5.
    Zhao J, Qu J, Rao Z. Experiment investigation on thermal performance of a large-scale oscillating heat pipe with self-rewetting fluid used for thermal energy storage. Int J Heat Mass Transf. 2017;108:760–9.CrossRefGoogle Scholar
  6. 6.
    Yin D, Wang H, Ma HB, Ji YL. Operation limitation of an oscillating heat pipe. Int J Heat Mass Transf. 2016;94:366–72.CrossRefGoogle Scholar
  7. 7.
    Hao T, Ma X, Lan Z, Zhao Y, Ma H. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe. Int J Heat Mass Transf. 2014;72:50–65.CrossRefGoogle Scholar
  8. 8.
    Mameli M, Marengo M, Zinna S. Numerical model of a multi-turn closed loop pulsating heat pipe: effects of the local pressure losses due to meanderings. Int J Heat Mass Transf. 2012;55:1036–47.CrossRefGoogle Scholar
  9. 9.
    Shi W, Pan L. Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels. J Therm Sci. 2017;26:73–81.CrossRefGoogle Scholar
  10. 10.
    Patel VM, Gaurav H, Mehta HB. Influence of working fluids on start-up mechanism and thermal performance of a closed loop pulsating heat pipe. Appl Therm Eng. 2017;110:1568–77.CrossRefGoogle Scholar
  11. 11.
    Tong BY, Wong TN, Ooi KT. Closed-loop pulsating heat pipe. Appl Therm Eng. 2001;21:1845–62.CrossRefGoogle Scholar
  12. 12.
    Ma HB, Qu W. Theoretical analysis of startup of a pulsating heat pipe. Int J Heat Mass Transf. 2006;50:2309–16.Google Scholar
  13. 13.
    Ma HB, Yin D, Rajab H. Theoretical analysis of maximum filling ratio in an oscillating heat pipe. Int J Heat Mass Transf. 2014;74:353–7.CrossRefGoogle Scholar
  14. 14.
    Ma H, Peng H, Pai PF. Nonlinear thermomechanical finite-element modeling, analysis and characterization of multi-turn oscillating heat pipes. Int J Heat Mass Transf. 2014;69:424–37.CrossRefGoogle Scholar
  15. 15.
    Han H, Cui X, Zhu Y, Xu T, Sui Y, Sun S. Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zoetrope and the corresponding pure fluids. Energy. 2016;109:724–36.CrossRefGoogle Scholar
  16. 16.
    Xu JL, Li YX, Wong TN. High speed flow visualization of a closed loop pulsating heat pipe. Int J Heat Mass Transf. 2005;48:3338–51.CrossRefGoogle Scholar
  17. 17.
    Mohammadi M, Taslimifar M, Saidi MH, Shafii MB, Afshin H, Hannani SK. Ferrofluidic open loop pulsating heat pipes: efficient candidates for thermal management of electronics. Exp Heat Transf. 2014;27:296–312.CrossRefGoogle Scholar
  18. 18.
    Daimaru T, Nagai H. Operational characteristics of the oscillating heat pipe with noncondensable gas. J Thermophys Heat Transf. 2015;29(3):563–71.CrossRefGoogle Scholar
  19. 19.
    Haghayegh S, Mohammadi M, Taslimifar M, Hannani SK, Shafii MB, Saidi MH, Afshin H. Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers. Nanoscale Microscale Thermophys Eng. 2014;18:18–38.CrossRefGoogle Scholar
  20. 20.
    Senjaya R, Inoue T. Oscillating heat pipe simulation considering bubble generation part I: presentation of the model and effects of a bubble generation. Int J Heat Mass Transf. 2013;60:816–24.CrossRefGoogle Scholar
  21. 21.
    Shafii MB, Ahmadi H, Faegh M. Experimental investigation of a novel magnetically variable conductance thermosiphon heat pipe. Appl Therm Eng. 2017;126:1–8.CrossRefGoogle Scholar
  22. 22.
    Ebrahimi M, Shafii MB, Bijarchi MA. Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels. Appl Therm Eng. 2015;90:838–47.CrossRefGoogle Scholar
  23. 23.
    Mosleh HJ, Bijarchi MA, Shafii MB. Experimental and numerical investigation of using pulsating heat pipes instead of fins in air-cooled heat exchangers. Energy Convers Manag. 2019;181:653–62.CrossRefGoogle Scholar
  24. 24.
    Sedighi E, Amarloo A, Shafii MB. Experimental investigation of the thermal characteristics of single-turn pulsating heat pipes with an extra branch. Int J Therm Sci. 2018;134:258–68.CrossRefGoogle Scholar
  25. 25.
    Jie Q, Jiateng Z, Zhonghao R. Experimental investigation on the thermal performance of three dimensional oscillating heat pipe. Int J Heat Mass Transf. 2017;109:589–600.CrossRefGoogle Scholar
  26. 26.
    Wang J, Li G, Zhu H, Luo J, Sundén B. Experimental investigation on convective heat transfer of ferrofluids inside a pipe under various magnet orientations. Int J Heat Mass Transf. 2019;132:407–19.CrossRefGoogle Scholar
  27. 27.
    Ji Y, Liu G, Ma H, Li G, Sun Y. An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Appl Therm Eng. 2013;61:690–7.CrossRefGoogle Scholar
  28. 28.
    Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manag. 2016;118:459–73.CrossRefGoogle Scholar
  29. 29.
    Sadeghinezhad E, Mehrali M, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HC. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl Therm Eng. 2016;100:775–87.CrossRefGoogle Scholar
  30. 30.
    Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci. 2016;74:265–70.CrossRefGoogle Scholar
  31. 31.
    Yousefi T, Mousavi S, Farahbakhsh B, Saghir M. Experimental investigation on the performance of CPU coolers: effect of heat pipe inclination angle and the use of nanofluids. Microelectron Reliab. 2013;53:1954–61.CrossRefGoogle Scholar
  32. 32.
    Yanxi S, Jinliang X. Chaotic behavior of pulsating heat pipes. Int J Heat Mass Transf. 2009;52:2932–41.CrossRefGoogle Scholar
  33. 33.
    Taslimifar M, Mohammadi M, Afshin H, Saidi MH, Shafii MB. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci. 2013;65:234–41.CrossRefGoogle Scholar
  34. 34.
    Malvandi A, Moshizi S, Ganji D. Effect of magnetic fields on heat convection inside a concentric annulus filled with Al2O3–water nanofluid. Adv Powder Technol. 2014;25:1817–24.CrossRefGoogle Scholar
  35. 35.
    Zarei Saleh Abad M, Ebrahimi-Dehshali M, Bijarchi MA, Shafii MB, Moosavi A. Visualization of pool boiling heat transfer of magnetic nanofluid. Heat Transf Asian Res. 2019. Scholar
  36. 36.
    Reay DA, Kew PA, McGlen RJ. Chapter 6—special types of heat pipe, heat pipes: theory, design and applications. Oxford: Butterworth-Heinemann; 2014. p. 135–73.Google Scholar
  37. 37.
    Sedighi E, Amarloo A, Shafii B. Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section. Int J Heat Mass Transf. 2018;126:431–41.CrossRefGoogle Scholar
  38. 38.
    Yang H, Khandekar S, Groll M. Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int J Therm Sci. 2009;48:815–24.CrossRefGoogle Scholar
  39. 39.
    Li Y, Wang Q, Chen S, Zhao B, Dai Y. Experimental investigation of the characteristics of cryogenic oscillating heat pipe. Int J Heat Mass Transf. 2014;79:713–9.CrossRefGoogle Scholar
  40. 40.
    Bandarra Filho EP, Mendoza OSH, Beicker CLL, Menezes A, Wen AD. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers Manag. 2014;84:261–7.CrossRefGoogle Scholar
  41. 41.
    Hao T, Ma H, Ma X. Heat transfer performance of polytetrafluoroethylene oscillating heat, pipe with water, ethanol, and acetone as working fluids. Int J Heat Mass Transf. 2019;131:109–20.CrossRefGoogle Scholar
  42. 42.
    Chiang YC, Kuo WC, Ho CC, Chieh JJ. Experimental study on thermal performances of heat pipes for air-conditioning systems influenced by magnetic nanofluids, external fields and micro wicks. Int J Refrig. 2014;43:62–70.CrossRefGoogle Scholar
  43. 43.
    Xian H, Xu W, Zhang Y, Du X, Yang Y. Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating. Int J Heat Mass Transf. 2014;79:332–41.CrossRefGoogle Scholar
  44. 44.
    Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. J Powder Technol. 2016;301:1218–26.CrossRefGoogle Scholar
  45. 45.
    Goshayeshi HR, Izadi F, Bashirnezhad K. Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and γFe2O3 for achieving an empirical correlation. Phys E Low-dimens Syst Nanostruct. 2017;89:43–9.CrossRefGoogle Scholar
  46. 46.
    Syam Sunder L, Singh MK, Sousa A. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer application. Int Commun Heat Mass Transf. 2013;44:7–14.CrossRefGoogle Scholar
  47. 47.
    Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.CrossRefGoogle Scholar
  48. 48.
    Holman J. Heat transfer. 8th ed. New York: McGraw-Hill Inc; 2001.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Hadi Davari
    • 1
  • Hamid Reza Goshayeshi
    • 1
    Email author
  • Hakan F. Öztop
    • 2
  • Issa Chaer
    • 3
  1. 1.Department of Mechanical Engineering, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Department of Mechanical Engineering, Technology FacultyFırat UniversityElazigTurkey
  3. 3.Centre for Civil and Building Service Engineering, School of the Built Environment and ArchitectureLondon South Bank UniversityLondonUK

Personalised recommendations