Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 6, pp 4407–4416 | Cite as

Thermal and mechanical properties of biodegradable composites with nanometric cellulose

  • Aleksandra Grząbka-ZasadzińskaEmail author
  • Majka Odalanowska
  • Sławomir Borysiak
Article
  • 34 Downloads

Abstract

These days, biodegradable polymers, due to their biocompatibility and biodegradability, gain much interest. They have significantly contributed to the development of new materials that can be used in packaging industry, medicine, and agriculture. Particularly, composites made of biodegradable polymers and renewable fillers are of great interest. In this work, two polymorphic forms of cellulose, differing also in terms of particle sizes, were used as fillers for polylactide (PLA). Composites were prepared by solvent casting method and then subjected to numerous tests. Wide-angle X-ray scattering, differential scanning calorimetry, and optical microscopy techniques were applied to define supermolecular structure of functional PLA/cellulose composites, crystallization parameters, as well as to observe phase transitions. Moreover, mechanical tests were carried out to assess the effect of polymorphic forms of cellulose on mechanical properties of composite materials. Polarization microscopy studies revealed that only cellulose I exhibits an ability to generate transcrystalline structures in the PLA matrix. Results of mechanical tests and thermogravimetric analysis showed a significant influence of particle size and polymorphic structure of cellulose on the tensile properties and thermostability of composites.

Keywords

Biocomposites Cellulose PLA Nucleating activity 

Notes

Acknowledgements

This work was supported by the Polish Ministry of Science and Higher Education, Grant No. 03/32/SBAD/0903.

References

  1. 1.
    Composites P. Polymer composites [Internet]. Composites. http://linkinghub.elsevier.com/retrieve/pii/0010436179901034 (1979).
  2. 2.
    Oksman K, Mathew AP, Bondeson D, Kvien I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol. 2006;66:2776–84.CrossRefGoogle Scholar
  3. 3.
    Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol [Internet]. Elsevier Ltd; 2010;70:1742–7. http://dx.doi.org/10.1016/j.compscitech.2010.07.005.CrossRefGoogle Scholar
  4. 4.
    Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test. 2014;35:73–9.CrossRefGoogle Scholar
  5. 5.
    Mathew AP, Oksman K, Sain M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci. 2005;97:2014–25.CrossRefGoogle Scholar
  6. 6.
    Garlotta D. A literature review of poly (lactic acid). J Polym Environ [Internet]. 2002;9:63–84. http://www.link.springer.com/10.1023/A:1020200822435%5Cnhttp://www.springerlink.com/index/X15J565570160G41.pdf.
  7. 7.
    Alan KTL, Ada Pui Yan Hung. Natural fiber-reinforced biodegradable and bioresorbable polymer composites. 2017.Google Scholar
  8. 8.
    Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol. 2007;67:2535–44.CrossRefGoogle Scholar
  9. 9.
    Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K. A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ. 2012;20:991–7.CrossRefGoogle Scholar
  10. 10.
    Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L. Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crops Prod [Internet]. Elsevier B.V.; 2015;67:439–47. http://dx.doi.org/10.1016/j.indcrop.2015.01.075.CrossRefGoogle Scholar
  11. 11.
    Bondeson D, Oksman K. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos Part A Appl Sci Manuf. 2007;38:2486–92.CrossRefGoogle Scholar
  12. 12.
    Grząbka-Zasadzińska A, Amietszajew T, Borysiak S. Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. J Therm Anal Calorim. 2017;130:143–54.CrossRefGoogle Scholar
  13. 13.
    Johari AP, Kurmvanshi SK, Mohanty S, Nayak SK. Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). Int J Biol Macromol [Internet]. Elsevier B.V.; 2016;84:329–39. http://dx.doi.org/10.1016/j.ijbiomac.2015.12.038.CrossRefGoogle Scholar
  14. 14.
    Mathew AP, Oksman K, Sain M. The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci. 2006;101:300–10.CrossRefGoogle Scholar
  15. 15.
    Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol [Internet]. Elsevier Ltd; 2010;70:815–21. http://dx.doi.org/10.1016/j.compscitech.2010.01.018.CrossRefGoogle Scholar
  16. 16.
    Quan H, Li ZM, Yang MB, Huang R. On transcrystallinity in semi-crystalline polymer composites. Compos Sci Technol. 2005;65:999–1021.CrossRefGoogle Scholar
  17. 17.
    Zafeiropoulos NE, Baillie CA, Matthews FL. Study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos Part A Appl Sci Manuf. 2001;32:525–43.CrossRefGoogle Scholar
  18. 18.
    Quillin DT, Caulfield DF, Koutsky JA. Crystallinity in the polypropylene/cellulose system. I. Nucleation and crystalline morphology. J Appl Polym Sci. 1993;50:1187–94.CrossRefGoogle Scholar
  19. 19.
    Wang C, Liu CR. Transcrystallization of polypropylene composites: nucleating ability of fibres. Polym (Guildf). 1999;40:289–98.CrossRefGoogle Scholar
  20. 20.
    Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF. A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res. 2005;44:5593–601.CrossRefGoogle Scholar
  21. 21.
    Grząbka-Zasadzińska A, Klapiszewski Ł, Bula K, Jesionowski T, Borysiak S. Supermolecular structure and nucleation ability of polylactide-based composites with silica/lignin hybrid fillers. J Therm Anal Calorim. 2016;126:263–75.CrossRefGoogle Scholar
  22. 22.
    Kamal MR, Khoshkava V. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym [Internet]. Elsevier Ltd.; 2015;123:105–14. http://dx.doi.org/10.1016/j.carbpol.2015.01.012.
  23. 23.
    Grząbka-Zasadzińska A, Smułek W, Kaczorek E, Borysiak S. Chitosan biocomposites with enzymatically produced nanocrystalline cellulose. Polym Compos. 2018;39:E448–56.CrossRefGoogle Scholar
  24. 24.
    Hindeleh AM, Johnson DJ. The resolution of multipeak data in fibre science. J Phys D Appl Phys. 1971.Google Scholar
  25. 25.
    Rabiej S. A comparison of two X-ray diffraction procedures for crystallinity determination. Eur Polym J. 1991.Google Scholar
  26. 26.
    French AD. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. 2014;21:885–96.CrossRefGoogle Scholar
  27. 27.
    Borysiak S. Influence of wood mercerization on the crystallization of polypropylene in wood/PP composites. J Therm Anal Calorim. 2012;109:595–603.CrossRefGoogle Scholar
  28. 28.
    Uthaman N, Majeed A, Pandurangan. Impact modification of polyoxymethylene (POM). E-Polymers. 2006;6:1–9.CrossRefGoogle Scholar
  29. 29.
    Rahman MM, Afrin S, Haque P, Islam MM, Islam MS, Gafur MA. Preparation and characterization of jute cellulose crystals-reinforced poly(l-lactic acid) biocomposite for biomedical applications. Int J Chem Eng. 2014;2014.Google Scholar
  30. 30.
    Frone AN, Berlioz S, Chailan JF, Panaitescu DM. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym. 2013;91:377–84.CrossRefGoogle Scholar
  31. 31.
    Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T. How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci. 2008;43:775–87.CrossRefGoogle Scholar
  32. 32.
    Kose R, Kondo T. Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci. 2013;128:1200–5.CrossRefGoogle Scholar
  33. 33.
    Cai Y, Petermann J, Wittich H. Transcrystallization in fiber-reinforced isotactic polypropylene composites in a temperature gradient. J Appl Polym Sci [Internet]. 1997;65:67–75. http://doi.wiley.com/10.1002/(SICI)1097-4628(19970705)65:1%3C67::AID-APP9%3E3.0.CO;2-O.CrossRefGoogle Scholar
  34. 34.
    Borysiak S. Fundamental studies on lignocellulose/polypropylene composites: effects of wood treatment on the transcrystalline morphology and mechanical properties. J Appl Polym Sci. 2013;127:1309–22.CrossRefGoogle Scholar
  35. 35.
    Felix JM, Gatenholm P. Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J Mater Sci. 1994;29:3043.CrossRefGoogle Scholar
  36. 36.
    Ambrosio-Martín J, Lopez-Rubio A, Fabra MJ, Gorrasi G, Pantani R, Lagaron JM. Assessment of ball milling methodology to develop polylactide-bacterial cellulose nanocrystals nanocomposites. J Appl Polym Sci. 2015;132.Google Scholar
  37. 37.
    Wen T, Zhang X, Xiong Z, De Vos S, Wang R, Wang F, et al. Study on fracture behavior of PLLA transcrystallization: Effect of crystalline morphology. J Appl Polym Sci. 2015;132.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Poznan University of Technology, Institute of Chemical Technology and EngineeringPoznańPoland

Personalised recommendations