High-temperature synthesis and unknown properties of M3Cr4(PO4)6, where M = Zn or Mg and a new solid solution Zn1.5Mg1.5Cr4(PO4)6

  • Anna Blonska-TaberoEmail author
  • Monika Bosacka
  • Elzbieta Filipek
  • Mateusz Piz
  • Pawel Kochmanski


For the first time, double phosphates(V) Zn3Cr4(PO4)6 and Mg3Cr4(PO4)6 were synthesized by non-waste solid-state reaction, performed in the temperature range 350–1150 °C. The change in the phase composition of samples during the synthesis, depending on the heating temperature, was examined using the XRD method. The results of the DTA measurements enabled both the correct selection of the heating temperatures of the samples and the determination of the thermal stability of the phases obtained. Zn3Cr4(PO4)6 and Mg3Cr4(PO4)6 have relatively high thermal stability in air, i.e. they melt incongruently at 1340 °C and about 1450 °C, respectively. Crystallites of the obtained double phosphates, observed by SEM method, are similar in shape, when their sizes are of the order of 0.5–6 µm. IR spectra of both double phosphates are presented. A new solid solution of the formula Zn1.5Mg1.5Cr4(PO4)6 was also obtained. It is stable in air up to 1412 °C. The energy gaps of Zn3Cr4(PO4)6, Mg3Cr4(PO4)6 and Zn1.5Mg1.5Cr4(PO4)6 are 4.00, 3.60 and 3.75 eV, respectively, as estimated from their UV–Vis DR spectra. The colour of all phases expressed in the coordinates of CIE L*C*h* colour space is very similar, and according to the RAL system, it can be described as boulder brown. All the obtained phases are good candidates to be as inorganic pigments.


Chromium magnesium zinc phosphates High-temperature reactions DTA XRD SEM UV–Vis (DRS) 



  1. 1.
    Xue X, Tang S, Yuan XY, Yue YB, Liu JK, Yang XH. One-step crushing & cladding technology and enhanced anticorrosion activity of Zn3(PO4)2@AlH2P3O10 pigment. J Alloys Compd. 2018;744:837–48.CrossRefGoogle Scholar
  2. 2.
    Llusar M, Zielinska A, Tena MA, Badenes JA, Monrós G. Blue-violet ceramic pigments based on Co and Mg Co2−xMgxP2O7 diphosphates. J Eur Ceram Soc. 2010;30:1887–96.CrossRefGoogle Scholar
  3. 3.
    Jašková V, Kalendová A. Anticorrosive coatings containing modified phosphates. Prog Org Coat. 2012;75:328–34.CrossRefGoogle Scholar
  4. 4.
    Xu S, Yan X, Bu Q, Xia H. Highly efficient conversion of carbohydrates into 5-hydroxymethylfurfural using the bi-functional CrPO4 catalyst. RSC Adv. 2016;6:8048–52.CrossRefGoogle Scholar
  5. 5.
    Gomonaj V, Toulhoat H. Selective oxidation of methane to formaldehyde catalyzed by phosphates: kinetic description by bond strengths and specific total acidities. ACS Catal. 2018;8:8263–72.CrossRefGoogle Scholar
  6. 6.
    Choi C, Seo S-D, Shim H-W, Dar MA, Cho IS, Kim D-W. Facile synthesis and electroactivity of 3-D hierarchically superstructured cobalt orthophosphate for lithium-ion batteries. J Alloys Compd. 2015;652:100–5.CrossRefGoogle Scholar
  7. 7.
    Gruβ M, Glaum R. Preparation and single crystal structure refinement of mixed orthophosphates M3Cr4(PO4)6 (M = Mg, Zn, Cu)—copper(II) in compressed octahedral coordination. Z Kristallogr. 1997;212:510–8.Google Scholar
  8. 8.
    Glaum R. Beiträge zum thermischen Verhalten wasserfreier Phosphate VIII. Darstellung und Kristallstruktur von Cr7(PO4)6. Das erste gemischtvalente Phosphat mit Cr(II) und Cr(III). Z Kristallogr. 1993;205:69–83.Google Scholar
  9. 9.
    Llusar M, Badenes JA, García A, Gargori C, Galindo R, Monrós G. Solid solutions of mixed metal Mn3−xMgxFe4(PO4)6 orthophosphates: colouring performance within a double-firing ceramic glaze. Ceram Int. 2011;37:493–504.CrossRefGoogle Scholar
  10. 10.
    Bosacka M, Blonska-Tabero A, Filipek E, Luxova J, Šulcová P. High-temperature reactions in the Co3Cr4(PO4)6-Cr(PO3)3 system. New compound CoCr2(P2O7)2 and its properties. J Therm Anal Calorim. 2017;130:95–101.CrossRefGoogle Scholar
  11. 11.
    Gorodylova N, Šulcová P. DTA-TGA and XRD study oft he formation of LISICON-type Li1+xCrxZr2−x(PO4)3 ceramic using ZrOCl2·8H2O as precursor. J Therm Anal Calorim. 2018;133:405–11.CrossRefGoogle Scholar
  12. 12.
    Blonska-Tabero A. A new iron lead vanadate Pb2FeV3O11: synthesis and some properties. Mater Res Bull. 2009;44:1621–5.CrossRefGoogle Scholar
  13. 13.
    Walczak J, Filipek E, Tabero P. CrVMoO7 and phase equilibria in the V9Mo6O40–CrVMoO7 system. Thermochim Acta. 1992;206:279–84.CrossRefGoogle Scholar
  14. 14.
    Gorodylova N, Šulcová P, Bosacka M, Filipek E. DTA-TG and XRD study on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 for synthesis of ZrP2O7. J Therm Anal Calorim. 2014;118:1095–100.CrossRefGoogle Scholar
  15. 15.
    Bosacka M, Jakubus P, Rychlowska-Himmel I. Obtaining of chromium(III) phosphates(V) in the solid state and their thermal stability. J Therm Anal Calorim. 2007;88:133–7.CrossRefGoogle Scholar
  16. 16.
    McNally RN, Peters FI, Ribbe PH. Laboratory furnace for studies in controlled atmospheres: melting points of MgO in a N2 atmosphere and of Cr2O3 in N2 and in air atmospheres. J Am Ceram Soc. 1961;44:491–3.CrossRefGoogle Scholar
  17. 17.
    Buxbaum G, Pfaff G. Industrial inorganic pigments. Wenheim: Wiley-VCH; 2005.CrossRefGoogle Scholar
  18. 18.
    Rulmont A, Cahay R, Liegeois-Duyckaerts M, Tarte P. Vibrational spectroscopy of phosphates: some general correlations between structure and spectra. Eur J Solid State Inorg Chem. 1991;28:207–19.Google Scholar
  19. 19.
    Korchemkin IV, Pet’kov IV, Kurazhkovskaya VS, Borovikova EY. Synthesis of sodium nickel phosphate and its crystallographic spectroscopic and temperature-controlled X-ray diffraction study. Russ J Inorg Chem. 2015;60:265–9.CrossRefGoogle Scholar
  20. 20.
    Touaiher M, Hajbi AE. Preparation and characterisation of the compounds MFePO5 (M = Ni, Cu). Adv Mat Res. 1994;1–2:215–22.Google Scholar
  21. 21.
    Baran EJ, Roncaglia DI. Infra-red spectra of α-CrPO4-type phases. Spectrochim Acta. 1988;44A:399–401.CrossRefGoogle Scholar
  22. 22.
    Bushiri MJ, Jayasree RS, Fakhfakh M, Nayar VU. Raman and infrared spectra analysis of thallium niobyl phosphates: Tl2NbO2PO4, Tl3NaNb4O9(PO4)2 and TlNbOP2O7. Mater Chem Phys. 2002;73:179–85.CrossRefGoogle Scholar
  23. 23.
    Wang X, Vander Griend DA, Stern ChL, Poeppelmeier KR. Structure and cation distribution of new ternary vanadates FeMg2V3O11 and FeZn2V3O11. J Alloys Compd. 2000;298:119–24.CrossRefGoogle Scholar
  24. 24.
    Stranford GT, Condrate RA. The infrared and Raman spectra of β-TaPO4 and β-NbPO4. J Mater Sci Lett. 1984;3:303–6.CrossRefGoogle Scholar
  25. 25.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976;A32:751–67.CrossRefGoogle Scholar
  26. 26.
    Blonska-Tabero A, Filipek E, Tabero P. Synthesis and selected properties of a new solid solution in the Zn2FeV3O11–Mg2FeV3O11 system. J Therm Anal Calorim. 2012;109:671–6.CrossRefGoogle Scholar
  27. 27.
    Llusar M, García A, Gargori C, Galindo R, Badenes JA, Monrós G. Synthesis of diphosphate Mn2−xMgxP2O7 solid solutions with thortveitite structure: new pink ceramic dyes for the colouration of ceramic glazes. J Eur Ceram Soc. 2012;32:765–76.CrossRefGoogle Scholar
  28. 28.
    Piz M, Filipek E. Synthesis and homogeneity range of Yb8−xYxV2O17 in the Yb8V2O17–Y8V2O17 system. J Therm Anal Calorim. 2017;130:277–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland
  2. 2.Faculty of Mechanical Engineering and MechatronicsWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations