Two interesting derivatives of 1-amino-1-hydrazino-2,2-dinitroethylene (AHDNE): synthesis and thermal properties

  • Meng Cai
  • Tian-Hong Zhou
  • Ya-Nan Li
  • Lei Lv
  • Kang-Zhen XuEmail author


Two new interesting compounds, ethanedial-1,2-bis-(2-(1-amino-2,2-dinitroethenyl))hydrazone (EDNH) and 3-dinitromethyl-1,2,4-triazine (DNTA), were synthesized by the reaction of 1-amino-1-hydrazino-2,2-dinitroethylene (AHDNE) and glyoxal under different acid–base conditions, and reaction processes were discussed. Thermal decomposition behaviors of the two compounds were studied with DSC and TG/DTG methods, and the kinetic equations of decomposition process were obtained. Self-accelerating decomposition temperature and critical temperature of thermal explosion are 193.92 and 209.75 °C for EDNH, and 242.46 and 259.94 °C for DNTA, respectively. Specific heat capacities of the two compounds all present a square relationship with temperature in determined temperature range, and molar heat capacities at 298.15 K are 331.30 and 213.13 J mol−1 K−1, respectively. DNTA and EDNH are relatively insensitive (> 35 and > 25 J), which are much lower than that of AHDNE.


Energetic materials 1-Amino-1-hydrazino-2,2-dinitroethylene (AHDNE) Thermal behavior Specific heat capacity 



This work was supported by the National Natural Science Foundation of China (No. 21673178), the National Defense Scientific Research Project and the Fund of Shanxi Province Key Laboratory (No. 14JS113).

Supplementary material

10973_2019_9013_MOESM1_ESM.docx (169 kb)
Supplementary material 1 (DOCX 169 kb)


  1. 1.
    Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U. Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron. 1998;54:11525–36.CrossRefGoogle Scholar
  2. 2.
    Hervé G, Jacob G, Latypov N. The reactivity of 1,1-diamino-2,2-dinitroethene (FOX-7). Tetrahedron. 2005;61:6743–5.CrossRefGoogle Scholar
  3. 3.
    Bellamy AJ. FOX-7 (1,1-diamino-2,2-dinitroethene). Struct Bond. 2007;125:1–33.CrossRefGoogle Scholar
  4. 4.
    Simkova L, Liska F, Ludvik J. Electrochemically initiated degradation of a new energetic material 2,2-dinitroethene-1,1-diamine (FOX-7). Curr Org Chem. 2011;15:2983–95.CrossRefGoogle Scholar
  5. 5.
    Li WX, Wang N, Farajtabar A, Liu ZT, Fei ZH, Zhao HK. Solute–solvent and solvent–solvent interactions and preferential solvation of 1,1-diamino-2,2-dinitroethylene in aqueous co-solvent mixtures of N, N-dimethylformamide and dimethyl sulfoxide. J Solut Chem. 2019;48:732–47.CrossRefGoogle Scholar
  6. 6.
    Gao HX, Shreeve JM. Recent progress in taming FOX-7 (1,1-diamino-2,2-dinitroethene). RSC Adv. 2016;6:6271–7.Google Scholar
  7. 7.
    Zhang Y, Sun Q, Xu KZ, Song JR, Zhao FQ. Review on the reactivity of 1,1-diamino-2,2- dinitroethylene (FOX-7). Propellants Explos Pyrotech. 2016;41:35–52.CrossRefGoogle Scholar
  8. 8.
    Dong Z, An D, Yang R, Ye ZW. Nitrogen-rich salts based on 3-dinitromethyl-[1,2,4] triazine: synthesis, characterization, and performance. Z Anorg Allg Chem. 2019;645:1031–6.CrossRefGoogle Scholar
  9. 9.
    Chao Y, Qi XJ, Wang CK, Jin YH, Cheng GB, Liu TL, Yang HW, Zhang QH. Revisiting the reactive chemistry of FOX-7: cyclization of FOX-7 affords the fused-ring polynitro compounds. Chem Commun. 2019;55:3497–500.CrossRefGoogle Scholar
  10. 10.
    Vo TT, Parrish DA, Shreeve JM. Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate. J Am Chem Soc. 2014;136:11934–7.CrossRefGoogle Scholar
  11. 11.
    Li CP, Feng ZC, Wang H, Zhou TH, Li YN, Xu KZ. Aromatic nucleophilic substitution of FOX-7: synthesis and properties of 1-amino-picrylamino-2,2-dinitroethylene (APDE) and its potassium salt [K(APDE)]. ChemPlusChem. 2019;84:794–8.CrossRefGoogle Scholar
  12. 12.
    Averkiev BB, Dreger ZA, Chaudhuri S. Density functional theory calculations of pressure effects on the structure and vibrations of 1,1-diamino-2,2-dinitroethene (FOX-7). J Phys Chem A. 2014;118:10002–9.CrossRefGoogle Scholar
  13. 13.
    Fang X, McLuckie WG. Laser ignitibility of insensitive secondary explosive 1,1-diamino-2,2-dinitroethene (FOX-7). J Hazard Mater. 2015;285:375–8.CrossRefGoogle Scholar
  14. 14.
    Lempert DB, Dorofeenko EM, Shu Y. Energy potential of solid composite propellants based on 1,1-diamino-2,2-dinitroethylene. Russ J Phys Chem. 2016;10:483–7.CrossRefGoogle Scholar
  15. 15.
    Axthammer QJ, Krumm B, Klapötke TM. The exciting chemistry of 1,1-diamino-2,2-dinitroethene and 1-amino-1-hydrazino-2,2-dinitroethene. J Phys Chem A. 2017;121:3567–79.CrossRefGoogle Scholar
  16. 16.
    Zhou TH, Wang XH, Xu KZ, Song JR, Zhao FQ. Two new complexes based on 2-(dinitromethylene)-1,3-diazacyclopentane (DNDZ): synthesis, crystal structure and properties. Inorg Chim Acta. 2016;453:149–53.CrossRefGoogle Scholar
  17. 17.
    Yan C, Yang HW, Jin YH, Wang KC, Liu TL, Tian JJ, Nie FD, Cheng GB, Zhang QH. A simple and versatile strategy for taming the FOX-7. Chem Commun. 2018;54:9333–5.CrossRefGoogle Scholar
  18. 18.
    Wang JY, Jin SH, Chen SS, Li LJ, Wang DX, Wang LN, Wang JF. Molecular dynamic simulations for FOX-7 and FOX-7 based PBXs. J Mol Model. 2018;145:145–9.CrossRefGoogle Scholar
  19. 19.
    Zhang QH, Shreeve JM. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev. 2014;114:10527–48.CrossRefGoogle Scholar
  20. 20.
    Zhou TH, Li YF, Xu KZ, Song JR, Zhao FQ. The new role of 1,1-diamino-2,2-dinitroethylene (FOX-7): two unexpected reactions. New J Chem. 2017;41:168–9.CrossRefGoogle Scholar
  21. 21.
    Bellamy AJ, Latypov NV, Goede P. Transamination reactions of 1,1-diamino-2,2-dinitroethene (FOX-7). J Chem Res. 2002;257:641–61.Google Scholar
  22. 22.
    Chang CR, Xu KZ, Song JR, Yan B, Ma HX, Gao HX, Zhao FQ. Preparation, crystal structure and theoretical calculation of 1-amino-1-hydrazino-2,2-dinitroethylene. Acta Chim Sin. 2008;66:1399–405.Google Scholar
  23. 23.
    Xu KZ, Zhao FQ, Song JR, Chang CR, Li M, Wang YY, Hu RZ. Non-isothermal decomposition kinetics, specific heat capacity and adiabatic time-to-explosion of 1-amino-1-hydrazino-2,2-dinitroethylene (AHDNE). Chin J Chem. 2009;27:665–7.CrossRefGoogle Scholar
  24. 24.
    Gao HX, Joo YH, Parrish DA, Vo T, Shreeve JM. 1-amino-1-hydrazino-2,2-dinitroethene and corresponding salts: synthesis, characterization and thermolysis studies. Chem Eur J. 2011;17:4613–6.CrossRefGoogle Scholar
  25. 25.
    Vo TT, Shreeve JM. 1,1-diamino-2,2-dinitroethene (FOX-7) and 1-amino-1-hydrazino-2,2-dinitroethene (HFOX) as amphotères: bases with strong acids. J Mater Chem A. 2015;3:8756–8.CrossRefGoogle Scholar
  26. 26.
    Garg S, Sarno G, Girasis C, Vranckx P, De VT. A patient-level pooled analysis assessing the impact of the SYNTAX (synergy between percutaneous coronary intervention with taxus and cardiac surgery) score on 1-year clinical outcomes in 6,508 patients enrolled in contemporary coronary stent trials. JACC Cardiovasc Interv. 2011;4:645–9.CrossRefGoogle Scholar
  27. 27.
    Garg S, Gao HX, Parrish DA, Shreeve JM. FOX-7 (1,1-diamino-2,2-dinitroethene): trapped by copper and amines. Inorg Chem. 2011;50:390–6.CrossRefGoogle Scholar
  28. 28.
    Vo TT, Parrish DA, Shreeve JM. 1,1-diamino-2,2-dintroethene (FOX-7) in copper and nickel diamine complexes and copper FOX-7. Inorg Chem. 2012;51:1963–6.CrossRefGoogle Scholar
  29. 29.
    Gao Z, Huang J, Xu KZ, Zhang WT, Song JR, Zhao FQ. Synthesis, structural characterization, and thermal properties. J Coord Chem. 2013;66:3572–9.CrossRefGoogle Scholar
  30. 30.
    Srinivas D, Mitchell LA, Parrishc DA, Shreeve JM. From FOX-7 to H-FOX to insensitive energetic materials with hypergolic properties. Chem Commun. 2016;52:7668–71.CrossRefGoogle Scholar
  31. 31.
    Yin X, Li J, Zhang GJ, Gu H, Ma Q, Wang SM, Wang J. Synthesis and thermal decomposition behavior of nitrogen- and oxygen-rich energetic material N-trinitromethyl-4,5-dicyano-2H-1,2,3-triazole. J Therm Anal Calorim. 2019;135:2317–28.CrossRefGoogle Scholar
  32. 32.
    Bellamy AJ, Contini AE, Latypov NV. 1-Amino-1-hydrazo-2,2-dinitroethene—a hazard warning. Propellants Explos Pyrotech. 2008;33:87–8.CrossRefGoogle Scholar
  33. 33.
    Astratlev A, Dashko D, Stepanov A. New trends in research of energetic materials. In: Proceedings of the seminar. 14th pardubice Czech Republic, vol 2, pp 469–513. 2011.Google Scholar
  34. 34.
    Ni PZ. Organic chemistry. In: Wang LC, editor. Carbonyl compound. Beijing: People’s Medical Press; 2003 (in Chinese).Google Scholar
  35. 35.
    Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008 (in Chinese).Google Scholar
  36. 36.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–5.CrossRefGoogle Scholar
  37. 37.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.CrossRefGoogle Scholar
  38. 38.
    Vyzovkin S, Burnham AK, Criado JM, Maqueda LA, Popescu C, Sbirrazzuoli N. ICTKA kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  39. 39.
    Feng ZC, Du YM, Zhai LJ, Xu KZ, Song JR, Zhao FQ. Hermetic thermal behaviors and specific heat capacities of bis(aminofurazano)furazan and bis(nitrofurazano)furazan. J Therm Anal Calorim. 2018;133:1379–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Meng Cai
    • 1
  • Tian-Hong Zhou
    • 1
  • Ya-Nan Li
    • 2
  • Lei Lv
    • 3
  • Kang-Zhen Xu
    • 1
    Email author
  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anChina
  2. 2.Xi’an Modern Chemistry Research InstituteXi’anChina
  3. 3.School of Petroleum Engineering and Environmental EngineeringYan’an UniversityYan’anChina

Personalised recommendations