Characteristics of liquid fuel combustion in a novel miniature vortex combustor

  • Nurulhasnan Abd Majid
  • Azam Che Idris
  • Hasan Mohd Faizal
  • Mohd Rosdzimin Abdul RahmanEmail author
  • Seyed Ehsan Hosseini


Miniature liquid fuel combustor in power generation requires confining combustion in the combustor chamber. However, this process faces substantial challenges that include higher heat loss, poor fuel vaporization rate, and low mixing residence time. In response to this challenge, a new method is proposed by introducing novel miniature combustor utilizing the advantage of the vortex flow motion that consists of two parts, a double chamber (inner tube and outer tube) at the top and a vortex-trapped chamber that is attached to anchor the flame at the bottom. The present combustor was operated by using n-heptane liquid fuel at fuel flow rate of 1.0–2.5 mL min−1 and airflow rate of 7.0–20.0 L min−1. The results showed that the heat transfer and recirculation mechanism sustain the combustion in the combustion chamber at fuel-lean regime. Confinement of the combustion inside the combustion chamber is attributed to recirculation phenomenon that was demonstrated through the enhancement of residence time and mixing rate. It is observed that the annulus enhanced the fuel vaporization rate, which is verified by measuring the temperature distribution at the combustor surfaces. The results of the thermal analysis also showed that the heat transfer enhancement is attributed to the vortex flow motion.


Miniature combustor Liquid fuel Vortex flow Recirculation Residence time Mixing rate 



The authors would like to acknowledge Universiti Pertahanan Nasional Malaysia for giving full support in this research activity. The authors wish to thank Research Management Center (RMC) for the Grant (UPNM/2016/GPJP/4/TK/3) from Universiti Pertahanan Nasional Malaysia.


  1. 1.
    Walther DC, Ahn J. Advances and challenges in the development of power-generation systems at small scales. Prog Energy Combust Sci. 2011;37:583–610.CrossRefGoogle Scholar
  2. 2.
    Chou SK, Yang WM, Chua KJ, Li J, Zhang KI. Development of micro power generators: a review. Appl Energy. 2011;88:1–16.CrossRefGoogle Scholar
  3. 3.
    Shirsat V, Gupta AK. A review of progress in heat recirculating meso-scale combustors. Appl Energy. 2011;88:4294–309.CrossRefGoogle Scholar
  4. 4.
    Ju Y, Maruta K. MIcroscale combustion: technology development and fundamental research. Prog Energy Combust Sci. 2011;37:669–715.CrossRefGoogle Scholar
  5. 5.
    Kunte A, Raghu AK, Kaisare NS. A spiral micro reactor for improved stability and performance for catalytic combustion of propane. Chem Eng Sci. 2018;187:87–97.CrossRefGoogle Scholar
  6. 6.
    Yang W, Wang Y, Zhou J, Zhou J, Wang Z, Cen K. Catalytic self-sustaining combustion of the alkanes with Pt/ZSM-5 packed bed in a micro scale tube. Chem Eng Sci. 2017;158:30–6.CrossRefGoogle Scholar
  7. 7.
    Li YH, Chao YC, Amadé NS, Dunn-Rankin D. Progress in miniature liquid film combustors: double chamber and central porous fuel inlet designs. Exp Therm Fluid Sci. 2008;32:1118–31.CrossRefGoogle Scholar
  8. 8.
    Dunn-Rankin D, Leal EM, Walther DC. Personal power systems. Prog Energy Combust Sci. 2005;31:422–65.CrossRefGoogle Scholar
  9. 9.
    Li YH, Chao YC, Dunn-Rankin D. Combustion in a meso-scale liquid fuel film combustor with central porous fuel inlet. Combust Sci Technol. 2008;180:1900–19.CrossRefGoogle Scholar
  10. 10.
    Sadasivuni V, Agrawal AK. A novel meso-scale combustion system for operation with liquid fuels. Proc Combust Inst. 2009;32:3155–62.CrossRefGoogle Scholar
  11. 11.
    Li J, Huang J, Yan M, Zhao D, Zhao J, Wei Z, Wang N. Experimental study of n-heptane/air combustion in meso-scale burners with porous media. Exp Therm Fluid Sci. 2014;52:47–58.CrossRefGoogle Scholar
  12. 12.
    Deng W, Klemic JF, Li X, Reed MA, Gomez A. Liquid fuel micro combustor using micro fabricated multiplexed electrospray sources. Proc Combust Inst. 2007;31:2239–46.CrossRefGoogle Scholar
  13. 13.
    Yuliati L, Seo T, Mikami M. Liquid-fuel combustion in a narrow tube using an electrospray technique. Combust Flame. 2012;159:462–4.CrossRefGoogle Scholar
  14. 14.
    Gan Y, Luo Z, Cheng Y, Xu J. The electro-spraying characteristics of ethanol for application in a small-scale combustor under combined electric field. Appl Therm Eng. 2015;87:595–604.CrossRefGoogle Scholar
  15. 15.
    Gan Y, Tong Y, Ju Y, Zhang X, Li H, Chen X. Experimental study on electro-spraying and combustion characteristics in meso-scale combustors. Energy Convers Manag. 2013;131:10–7.CrossRefGoogle Scholar
  16. 16.
    Gan Y, Tong Y, Jiang Z, Chen X, Li H, Jiang X. Electro-spraying and catalytic combustion characteristics of ethanol in meso-scale combustor with steel and platinum meshes. Energy Convers Manag. 2018;164:410–6.CrossRefGoogle Scholar
  17. 17.
    Vijayan V, Gupta AK. Thermal performance of a meso-scale liquid-fuel combustor. Appl Energy. 2011;88:2335–43.CrossRefGoogle Scholar
  18. 18.
    Sirignano WA, Pham TK, Dunn-Rankin D. Miniature-scale liquid fuel film combustor. Proc Combust Inst. 2002;29:925–31.CrossRefGoogle Scholar
  19. 19.
    Pham TK, Sarzi-Amade’ N, Dunn-Rankin D, Sirignano WA. Liquid film combustion in small cylindrical chamber. In: Proceedings of fourth joint meeting of the US sections of the combustion institute, Philadelphia, PA, March 20–23, 2005.Google Scholar
  20. 20.
    Pham TK, Dunn-Rankin D, Sirignano WA. Flame structure in small-scale liquid film combustors. Proc Combust Inst. 2007;31:3269–75.CrossRefGoogle Scholar
  21. 21.
    Mattioli R, Pham TK, Dunn-Rankin D. Secondary air injection in miniature liquid fuel film combustors. Proc Combust Inst. 2009;32:3091–8.CrossRefGoogle Scholar
  22. 22.
    Giani C, Dunn-Rankin D. Miniature fuel film combustor: swirl vane design and combustor characterization. Combust Sci Technol. 2013;185:1464–81.CrossRefGoogle Scholar
  23. 23.
    Soegiharto AFH, Wardana ING, Yuliati L, Nursasongko M. The role of liquid fuels channel configuration on the combustion inside cylindrical meso scale combustor. J Combust. 2017;2017:3679679.Google Scholar
  24. 24.
    Shi B, Cao Q, Xie D, Peng W, Wang N. A novel combustion system for liquid fuel evaporating and burning. Proc Combust Inst. 2019;37:4329–36.CrossRefGoogle Scholar
  25. 25.
    Dhir VK, Chang F. Heat transfer enhancement using tangential injection. ASHRAE Trans. 1992;98:383–90.Google Scholar
  26. 26.
    Matsumoto R, Tanikawa T, Sugimoto T, et al. Development of water heater using tubular flame. Mech Eng J. 2014;1(5):1–15.CrossRefGoogle Scholar
  27. 27.
    Shimokuri D, Taomoto Y, Matsumoto R. Development of a powerful miniature power system with a meso-scale vortex combustor. Proc Combust Inst. 2017;36:4253–60.CrossRefGoogle Scholar
  28. 28.
    Westbrook CK, Dryer FL. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust Sci Technol. 1981;27:31–43.CrossRefGoogle Scholar
  29. 29.
    Syred N, Beer JM. Combustion in swirling flows: a review. Combust Flame. 1974;23:143–201.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversiti Pertahanan Nasional MalaysiaKuala LumpurMalaysia
  2. 2.Automotive Development Centre (ADC), Institute for Vehicle System and Engineering, School of Mechanical Engineering, Faculty of EngineeringUniversiti Teknologi Malaysia (UTM)Johor BaharuMalaysia
  3. 3.Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical EngineeringArkansas Tech UniversityRussellvilleUSA

Personalised recommendations