Advertisement

Impact of MHD on hybrid nanomaterial free convective flow within a permeable region

  • Tran Dinh Manh
  • Nguyen Dang Nam
  • Gihad Keyany Abdulrahman
  • Rasoul Moradi
  • Houman BabazadehEmail author
Article
  • 23 Downloads

Abstract

Computational modeling was employed to scrutinize the nanomaterial influence of flow patterns and thermal treatment within a porous region. Incorporating non-Darcy approach for porous region and inserting terms of Lorentz forces result the final equations which have been simulated via CVFEM. It should be note that homogeneous model with respect of former empirical correlations was involved for nanofluid modeling. Results revealed that temperature increment can be observed with impose of magnetic force while reverse trend occurs with rise of permeability. Diminution of convective flow occurs due to rise of Ha and results in lower Nuave. Isotherms become more distorted as permeability augments but less distortion appears with rise of Ha.

Keywords

Convection Radiative Lorentz Nanomaterial CVFEM 

Notes

References

  1. 1.
    Sheikholeslami M, Houman B. Rokni, Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.CrossRefGoogle Scholar
  2. 2.
    Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.CrossRefGoogle Scholar
  3. 3.
    Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int. J Heat Mass Transf. 2018;116:909–19.CrossRefGoogle Scholar
  4. 4.
    Jahanian O, Jazayeri SA. A numerical investigation on the effects of formaldehyde as an additive on the performance of an HCCI engine fueled with natural gas. Int J Energy Environ Eng. 2011;2(3):79–89.Google Scholar
  5. 5.
    Jahanian O, Jazayeri SA. A comprehensive numerical study on effects of natural gas composition on the operation of an HCCI Engine. Oil Gas Sci Technol Rev IFP Energies nouvelles. 2012;67(3):503–15.CrossRefGoogle Scholar
  6. 6.
    Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.Google Scholar
  7. 7.
    Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Thermal Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08235-3.CrossRefGoogle Scholar
  8. 8.
    Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Thermal Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08156-1.CrossRefGoogle Scholar
  9. 9.
    Qin Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015;96:86–94.CrossRefGoogle Scholar
  10. 10.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-018-7866-7.CrossRefGoogle Scholar
  11. 11.
    Li Z, Sheikholeslami M, Jafaryar M, Shafee A. Time dependent heat transfer simulation for NEPCM solidification inside a channel. J Thermal Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08140-9.CrossRefGoogle Scholar
  12. 12.
    Qin Y, Zhang M, Mei G. A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol. 2018;562:725–32.CrossRefGoogle Scholar
  13. 13.
    Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fractals. 2016;89:290–4.CrossRefGoogle Scholar
  14. 14.
    Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.CrossRefGoogle Scholar
  15. 15.
    Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018.  https://doi.org/10.1063/1.5012517.CrossRefGoogle Scholar
  16. 16.
    Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08878-2.CrossRefGoogle Scholar
  17. 17.
    Qin Y, Liang J, Tan K, Li F. A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol Energy. 2016;133:172–9.CrossRefGoogle Scholar
  18. 18.
    Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.CrossRefGoogle Scholar
  19. 19.
    Kalidasan K, Velkennedy R, Kanna PR. Laminar natural convection of Copper-Titania/Water hybrid nanofluid in an open ended C-shaped enclosure with an isothermal block. J Mol Liquids. 2017;246:251–8.CrossRefGoogle Scholar
  20. 20.
    Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow. 2005;26(6):855–64.CrossRefGoogle Scholar
  21. 21.
    Sheikholeslami Mohsen, Rokni Houman B. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.CrossRefGoogle Scholar
  22. 22.
    Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2019.  https://doi.org/10.1016/j.jclepro.2019.118888.CrossRefGoogle Scholar
  23. 23.
    Gao W, Farahani MR. Generalization bounds and uniform bounds for multi-dividing ontology algorithms with convex ontology loss function. Comput J. 2017;60(9):1289–99.Google Scholar
  24. 24.
    Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Thermal Anal Calorim. 2019;135(1):305–23.  https://doi.org/10.1007/s10973-018-7093-2.CrossRefGoogle Scholar
  25. 25.
    Sheikholeslami M. Numerical modeling of Nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.CrossRefGoogle Scholar
  26. 26.
    Gao W, Wang WF. Analysis of k-partite ranking algorithm in area under the receiver operating characteristic curve criterion. Int J Comput Math. 2018;95(8):1527–47.CrossRefGoogle Scholar
  27. 27.
    Sheikholeslami M, Shamlooei M. Fe3O4- H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrogen Energy. 2017;42(9):5708–18.CrossRefGoogle Scholar
  28. 28.
    Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.CrossRefGoogle Scholar
  29. 29.
    Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.CrossRefGoogle Scholar
  30. 30.
    Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.CrossRefGoogle Scholar
  31. 31.
    Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput. 2017;298:272–82.Google Scholar
  32. 32.
    Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.CrossRefGoogle Scholar
  34. 34.
    Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.CrossRefGoogle Scholar
  35. 35.
    Sheikholeslami M, Zia QM, Ellahi R. Influence of induced magnetic field on free convection of nanofluid considering Koo–Kleinstreuer–Li (KKL) correlation. Appl Sci. 2016;6:324.  https://doi.org/10.3390/app6110324.CrossRefGoogle Scholar
  36. 36.
    Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.CrossRefGoogle Scholar
  37. 37.
    Sheikholeslami M. Influence of magnetic field on Al2O3–H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.CrossRefGoogle Scholar
  38. 38.
    Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.CrossRefGoogle Scholar
  39. 39.
    Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.CrossRefGoogle Scholar
  40. 40.
    Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156(Supplement C):218–24.CrossRefGoogle Scholar
  41. 41.
    Sheikholeslami Mohsen. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42:19611–21.CrossRefGoogle Scholar
  42. 42.
    Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.CrossRefGoogle Scholar
  43. 43.
    Hedayat M, Sheikholeslami M, Shafee A, Nguyen-Thoi T, Henda MB, Tlili I, Li Z. Investigation of nanofluid conduction heat transfer within a triplex tube considering solidification. J Mol Liq. 2019;290:111232.CrossRefGoogle Scholar
  44. 44.
    Qin Y. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int J Heat Mass Transf. 2016;97:391–9.CrossRefGoogle Scholar
  45. 45.
    Sheikholeslami M, Hayat T, Alsaedi A, Abelman S. Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. Int J Heat Mass Transf. 2017;108:2558–65.CrossRefGoogle Scholar
  46. 46.
    Farshad SA, Sheikholeslami M. FVM modeling of nanofluid forced convection through a solar unit involving MCTT. Int J Mech Sci. 2019;159:126–39.CrossRefGoogle Scholar
  47. 47.
    Sheikholeslami M, Rokni HB. Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. J Mol Liq. 2017;232:390–5.CrossRefGoogle Scholar
  48. 48.
    Sundar LS, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98.CrossRefGoogle Scholar
  49. 49.
    Benzema M, Benkahla YK, Labsi N, Ouyahia S-E, El Ganaoui M. Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag–MgO/water hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):1113–32.CrossRefGoogle Scholar
  50. 50.
    Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.CrossRefGoogle Scholar
  51. 51.
    Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Solar Energy. 2017;157(Supplement C):1047–55.CrossRefGoogle Scholar
  52. 52.
    Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.CrossRefGoogle Scholar
  53. 53.
    Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.CrossRefGoogle Scholar
  54. 54.
    Sheikholeslami M. Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl. 2018;30(4):1055–64.CrossRefGoogle Scholar
  55. 55.
    Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.CrossRefGoogle Scholar
  56. 56.
    Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.CrossRefGoogle Scholar
  57. 57.
    Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.CrossRefGoogle Scholar
  58. 58.
    Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.CrossRefGoogle Scholar
  59. 59.
    Sheikholeslami Mohsen, Arabkoohsar Ahmad, Khan Ilyas, Shafee Ahmad, Li Zhixiong. Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.CrossRefGoogle Scholar
  60. 60.
    Sheikholeslami M, Gerdroodbary MB, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Thermal Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08858-6.CrossRefGoogle Scholar
  61. 61.
    Bhuvaneswari M, Ganesan PB, Sivasankaran S, Viswanathan KK. Effect of variable fluid properties on natural convection of nanofluids in a cavity with linearly varying wall temperature. Math Probl Eng. 2015;2015:13.CrossRefGoogle Scholar
  62. 62.
    Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.CrossRefGoogle Scholar
  63. 63.
    Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.CrossRefGoogle Scholar
  64. 64.
    Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Heatline visualization of natural convection in a thick walled open cavity filled with a nanofluid. Int J Heat Mass Transf. 2017;109:175–86.CrossRefGoogle Scholar
  65. 65.
    Rafatijo H, Monge-Palacios M, Thompson DL. Identifying collisions of various molecularities in molecular dynamics simulations. J Phys Chem A. 2019;123(6):1131–9.  https://doi.org/10.1021/acs.jpca.8b11686.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rafatijo H, Thompson DL. General application of Tolman’s concept of activation energy. J Chem Phys. 2017;147:224111.  https://doi.org/10.1063/1.5009751.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.CrossRefGoogle Scholar
  68. 68.
    Gao W, Wang WF. The vertex version of weighted wiener number for bicyclic molecular structures. Comput Math Methods Med. 2015; Article ID 418106, 10. http://dx.doi.org/10.1155/2015/418106.
  69. 69.
    Sheikholeslami M, Zareei A, Jafaryar M, Shafee A, Li Z, Smida A, Tlili I. Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel. Phys A Stat Mech Appl. 2019;525:557–65.CrossRefGoogle Scholar
  70. 70.
    Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019.  https://doi.org/10.1016/j.jclepro.2019.118235.CrossRefGoogle Scholar
  71. 71.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.CrossRefGoogle Scholar
  72. 72.
    Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.CrossRefGoogle Scholar
  73. 73.
    Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.CrossRefGoogle Scholar
  74. 74.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Hydrothermal and second law behavior for charging of NEPCM in a two dimensional thermal storage unit. Chin J Phys. 2019;58:244–52.CrossRefGoogle Scholar
  75. 75.
    Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.CrossRefGoogle Scholar
  76. 76.
    Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08683-x.CrossRefGoogle Scholar
  77. 77.
    Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger; review. J Thermal Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08634-6.CrossRefGoogle Scholar
  78. 78.
    Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.CrossRefGoogle Scholar
  79. 79.
    Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.CrossRefGoogle Scholar
  80. 80.
    Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.CrossRefGoogle Scholar
  81. 81.
    Sheremet MA, Pop I, Shenoy A. Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’nanofluid model. Eur Phys J Plus. 2016;131(3):62.CrossRefGoogle Scholar
  82. 82.
    Putra N, Roetzel W, Das S. Natural convection of nanofluids. Heat Mass Transf. 2003;39:775–84.CrossRefGoogle Scholar
  83. 83.
    Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on Magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.CrossRefGoogle Scholar
  84. 84.
    Sheikholeslami M. Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer. Amsterdam: Elsevier; 2019. ISBN 9780128141526.CrossRefGoogle Scholar
  85. 85.
    Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK. Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci. 1995;33:1075–84.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Tran Dinh Manh
    • 1
  • Nguyen Dang Nam
    • 1
  • Gihad Keyany Abdulrahman
    • 2
  • Rasoul Moradi
    • 3
  • Houman Babazadeh
    • 4
    • 5
    Email author
  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangViet Nam
  2. 2.Department of Petroleum Engineering, College of EngineeringKnowledge UniversityErbilIraq
  3. 3.Department of Chemical Engineering, School of Engineering & Applied ScienceKhazar UniversityBakuAzerbaijan
  4. 4.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations