Advertisement

TG-FTIR coupled analysis to predetermine effective precursors for laser-activated and electroless metallized materials

  • Piotr RytlewskiEmail author
  • Bartłomiej Jagodziński
  • Agnieszka Wojciechowska
  • Krzysztof Moraczewski
  • Rafał Malinowski
Article
  • 31 Downloads

Abstract

Copper compounds can be used as additives to elaborate polymer materials, which after laser-induced ablation can be directly metallized on the irradiated surface area. In this work, three [Cu(l-tyr)2]n (l-tyr = l-tyrosine) (A), [Cu(bpy)3][CrO4]·7.5H2O (bpy = 2,2′-bipyridine) (B) and [Cu(bpy)2(O2SO2)]·CH3OH (C) copper(II) complexes were evaluated. The complexes were mixed at 20 mass% with polyurethane resin to form the coatings. The coatings were irradiated with ArF excimer laser and electroless metallized. It was found that only complex A was effective metallization precursors. Thermal properties of the copper(II) complexes were considered as crucial for defining effective precursors. TG-FTIR coupled analysis was applied to predetermine thermal properties of the compounds, which can be responsible for effective metallization. It was found that the main reason for unsuccessful metallization of the coatings containing complexes B or C was release of lattice H2O or CH3OH molecules in crystal structures, respectively, which affected ablation of the coatings. Appropriate model of laser ablation was also proposed.

Keywords

Copper(II) complexes TG-FTIR coupled analysis Polymer coating Laser modification Electroless metallization 

Notes

Acknowledgements

This work has been financed from the funds of the National Centre of Science granted upon decision DEC-2013/11/D/ST8/03423.

References

  1. 1.
    Moraczewski K. Effect of metallization time on thermal stability of copper-plated polylactide. J Therm Anal Calorim. 2017;129:16971703.CrossRefGoogle Scholar
  2. 2.
    Yan Y, Warren SC, Fuller P, Grzybowski BA. Chemoelectronic circuits based on metal nanoparticles. Nat Nanotechnol. 2016;11:603–8.CrossRefGoogle Scholar
  3. 3.
    Rytlewski P, Jagodziński B, Moraczewski K. Laser-assisted electroless metallization of polymer materials: a critical review. Rev Adhes Adhes. 2016;4:334–66.CrossRefGoogle Scholar
  4. 4.
    Charbonnier M, Romand M, Goepfert Y, Leonard D, Bessuueille F, Bouadi M. Palladium (+ 2) reduction: a key step for the electroless Ni metallization of insulating substrates by a tin-free process. Thin Solid Films. 2006;515:1623–33.CrossRefGoogle Scholar
  5. 5.
    Bhansali S, Sood DK. A novel technique for fabrication of metallic structures on polyimide by selective electroless copper plating using ion implantation. Thin Solid Films. 1995;270:489–92.CrossRefGoogle Scholar
  6. 6.
    Yu ZJ, Kang ET, Neoh KG. Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers. Polymer. 2002;43:4137–46.CrossRefGoogle Scholar
  7. 7.
    Bachy B, Franke J. Experimental investigation and optimization for the effective parameters in the laser direct structuring process. J Laser Micro Nanoeng. 2015;10:202–9.CrossRefGoogle Scholar
  8. 8.
    Yang JY, Cho JH, Yoo MJ. Selective metallization on copper aluminate composite via laser direct structuring technology. Compos B. 2017;110:361–7.CrossRefGoogle Scholar
  9. 9.
    Ratautas K, Gedvilas M, Stankeviciene I, Jagminiene A, Norkus E, Raciukaitis G, Sinopoli S, Emanuele U, Pira NL. Laser-induced selective metal plating on PP and PC/ABS polymers surface. In: Proceedings of the IEEE. 2016. p. 7738925.Google Scholar
  10. 10.
    Hanus F, Kolev K, Jadin A, Laude LD. Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films. Appl Surf Sci. 2000;154–155:320–3.CrossRefGoogle Scholar
  11. 11.
    Charbonnier M, Romand M, Esrom H, Seeböck R. Functionalization of polymer surfaces using excimer VUV systems and silent discharges. Application to electroless metallization. J Adhes. 2001;75:381–404.CrossRefGoogle Scholar
  12. 12.
    Charbonnier M, Romand M, Goepfert Y, Leonard D, Bouadi M. Copper metallization of polymers by a palladium-free electroless process. Surf Coat Technol. 2006;200:5478–86.CrossRefGoogle Scholar
  13. 13.
    Charbonnier M, Romand M, Goepfert Y. Ni direct electroless metallization of polymers by a new palladium-free process. Surf Coat Technol. 2006;200:5028–36.CrossRefGoogle Scholar
  14. 14.
    Rytlewski P, Bahners T, Polewski F, Gebert B, Gutmann JS, Hartmann N, Hagemann U, Moraczewski K. Laser-induced surface activation of biocomposites for electroless metallization. Surf Coat Technol. 2017;311:104–12.CrossRefGoogle Scholar
  15. 15.
    Huske M, J. Kickelhain, Muller J, Esser G. Laser supported activation and additive metallization of thermoplastics for 3D-MIDs. In: Proceedings of LANE. 2001.Google Scholar
  16. 16.
    Ratautasa K, Gedvilasa M, Stankeviciene I, Jagminiene A, Norkus E, Pira N, Sinopoli S, Raciukaitis G. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes. Appl Surf Sci. 2017;412:319–26.CrossRefGoogle Scholar
  17. 17.
    Gedvilas M, Ratautas K, Jagminiene A, Stankeviciene I, Pira N, Sinopoli S, Kacar E, Norkus E, Raciukaitis G. Percolation effect of a Cu layer on a MWCNT/PP nanocomposite substrate after laser direct structuring and autocatalytic plating. RSC Adv. 2018;8:30305–9.CrossRefGoogle Scholar
  18. 18.
    Rytlewski P, Mróz W, Budner B, Moraczewski K, Malinowski R, Jagodziński B. Application of thermogravimetry in the assessment of coatings ability to be metallized. J Therm Anal Calorim. 2017;127:381–7.CrossRefGoogle Scholar
  19. 19.
    Wojciechowska A, Daszkiewicz M, Bieńko A. Polymeric Zn(II) and Cu(II) complexes with exobidentate bridging l-tyrosine: synthesis, structural and spectroscopic properties. Polyhedron. 2009;28:1481–9.CrossRefGoogle Scholar
  20. 20.
    Wojciechowska A, Pietraszko A, Bronowska W, Staszak Z, Jezierska J, Cieślak-Golonka M. Geometric distortions of octahedral cations and tetrahedral anions in disordered [Cu(bpy)3]CrO4·7.5H2O crystal—a comparative study. Polyhedron. 2010;29:2574–81.CrossRefGoogle Scholar
  21. 21.
    Wojciechowska A, Jezierska J, Bieńko A, Daszkiewicz M. Structural and spectroscopic parameters of distortion in [Cu(bpy)2(O2SO2)]·CH3OH and [Cu(bpy)3][SO4]·7.5H2O—synthesis, crystal structure, spectroscopic and magnetic properties. Polyhedron. 2011;30:1547–54.CrossRefGoogle Scholar
  22. 22.
    Sanoop AP, Rajeev R, George BK. Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2015;606:34–40.CrossRefGoogle Scholar
  23. 23.
    Dyer PE. Excimer laser polymer ablation: twenty years on. Appl Phys A. 2003;77:167–73.CrossRefGoogle Scholar
  24. 24.
    Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103:577–644.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringKazimierz Wielki UniversityBydgoszczPoland
  2. 2.Faculty of ChemistryWroclaw University of Science and TechnologyWrocławPoland
  3. 3.The Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and DyesToruńPoland

Personalised recommendations