Advertisement

An investigation of the physical, thermal and mechanical properties of fired clay/SiC ceramics for thermal energy storage

  • Abdoul Razac Sane
  • Pierre-Marie Nigay
  • Doan Pham MinhEmail author
  • Claudia Toussaint
  • Alain Germeau
  • Nawal Semlal
  • Rachid Boulif
  • Ange Nzihou
Article
  • 52 Downloads

Abstract

Thermal energy storage (TES) has been identified as a breakthrough concept in development of renewable technologies. However, the main challenges are related to the development of competitive heat storage materials. Despite the number of studies on heat storage materials, the determination of new alternatives for next generation technologies is still open. In this regard, this paper presents the results of an experimental study of the physical, thermal and mechanical properties of SiC-doped ceramics as potential materials for TES applications. Two kinds of SiC additives (high and low densities) were incorporated with different percentages into the clay matrix in order to produce ceramics via the extrusion process. The addition of low-density SiC (true density 3.16 g cm−3) led to the increasing of porosity with large pore sizes and the decreasing of bulk density. Therefore, the thermal and mechanical properties are decreased up to − 50% for flexural strength and − 15% for thermal conductivity when 20 mass% of low-density SiC was used. On the other hand, when high-density SiC (true density 3.42 g cm−3) was used, properties of the clay ceramic were strongly improved: i.e., increase in the bulk density, decrease in the porosity, increase in the thermal conductivity and increase in the flexural strength. The best material was found with the addition of 20 mass% of high-density SiC which had a thermal conductivity of 1 W m−1 K−1, a specific heat capacity of 0.62 kJ kg−1 K−1 and a mechanical strength of 19.6 MPa. It also showed a high thermal stability after 20 successive heating/cooling cycles. Hence, this study provided a useful insight into how the SiC modified the microstructure and properties of fired clay ceramics. Thus, the current results suggest that clay ceramics with high-density SiC addition are promising materials for thermal energy storage applications.

Keywords

SiC Clay Ceramic Thermal energy storage Thermal analysis Thermal properties Mechanical strength Microstructure 

Notes

References

  1. 1.
    Cabeza LF, Martorell I, Miro L, Fernández AI, Barreneche C. Introduction to thermal energy storage (TES) systems. In: Cabeza LF, editor. Advances in thermal energy storage systems. Elsevier Ltd: Hoboken; 2015. p. 1–28.Google Scholar
  2. 2.
    Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Institute Chem Eng. 2018;86:25–41.CrossRefGoogle Scholar
  3. 3.
    Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.CrossRefGoogle Scholar
  4. 4.
    Trabelsi SE, Chargui R, Qoaider L, Liqreina A, Guizani A. Techno-economic performance of concentrating solar power plants under the climatic conditions of the southern region of Tunisia. Energy Conv Manag. 2016;119:203–14.CrossRefGoogle Scholar
  5. 5.
    Andasol 1: The largest solar power station officially inaugurated. In: DLR, New Archives, Press releases. 2009. https://www.dlr.de/en/desktopdefault.aspx/tabid-5105/8598_read-17179/8598_page-3/. Accessed 17 Mar 2019.
  6. 6.
    Dinter F, Gonzalez DM. Operability, reliability and economic benefits of CSP with thermal energy storage: first year of operation of ANDASOL 3. Energy Proc. 2014;49:2472–81.CrossRefGoogle Scholar
  7. 7.
    Andasol-2. In: Solarpaces. NREL, Concentrating Solar Power Projects. 2017. https://solarpaces.nrel.gov/andasol-2. Accessed 17 Mar 2019.
  8. 8.
    King of Spain opens Gemasolar plant. Renew Energy. Focus. 2011;12:6.Google Scholar
  9. 9.
    Relloso S, Garcia E. Tower technology cost reduction approach after Gemasolar experience. Energy Proc. 2015;69:1660–6.CrossRefGoogle Scholar
  10. 10.
    Solana Generating Station. In: Solarpaces. NREL, Concentrating Solar Power Projects. 2015. https://solarpaces.nrel.gov/solana-generating-station. Accessed 21 Mar 2019.
  11. 11.
    Noor Ouarzazate. In Masen. 2015. http://www.masen.ma/fr/publications/rapports/noor-ouarzazate. Accessed 21 Mar 2019.
  12. 12.
    Fernández AG, Galleguillos H, Fuentealba E, Pérez FJ. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Thermal Anal Calor. 2015;122(1):3–9.CrossRefGoogle Scholar
  13. 13.
    Ushak S, Fernández AG, Grageda M. Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems. In: Cabeza LF, editor. Advances in thermal energy storage systems. Elsevier Ltd: Hoboken; 2015. p. 49–63.CrossRefGoogle Scholar
  14. 14.
    Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci. 2013;39:285–319.CrossRefGoogle Scholar
  15. 15.
    Faik A, Guillot S, Lambert J, Veron E, Ory S, Bessada C, Echegut P, Py X. Thermal storage material from inertized wastes: evolution of structural and radiative properties with temperature. Sol Energy. 2012;86:139–46.CrossRefGoogle Scholar
  16. 16.
    Technology roadmap: Solar photovoltaic energy. In: International Energy Agency publications; 2014. https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf. Accessed 17 Mar 2019.
  17. 17.
    Peiro G, Gasia J, Miro L, Prieto C, Cabeza LF. Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup. Appl Ener. 2016;178:394–403.CrossRefGoogle Scholar
  18. 18.
    Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF. State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renew Sustain Energy Rev. 2010;14:31–55.CrossRefGoogle Scholar
  19. 19.
    Meffre A. Matériaux de stockage thermique haute température issus de la valorisation de matières premières secondaires inorganiques. Ph.D. thesis. Université de Perpignan Via Domitia; 2012.Google Scholar
  20. 20.
    Gutierrez A, Miro L, Gil A, Aseguinolaza JR, Barreneche C, Calvet N, Py X, Fernandez AI, Grageda M, Ushak S, Cabeza LF. Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renew Sustain Energy Rev. 2016;59:763–83.CrossRefGoogle Scholar
  21. 21.
    Ortega-Fernandez I, Calvet N, Gil A, Rodriguez-Aseguinolaza J, Faik A, Aguanno BD. Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material. Energy. 2015;89:601–9.CrossRefGoogle Scholar
  22. 22.
    Motte F, Falcoz Q, Veron E, Py X. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes. Appl Energy. 2015;155:14–22.CrossRefGoogle Scholar
  23. 23.
    Laing D, Lehmann D, Fiss M, Bahl C. Test results of concrete thermal energy storage for parabolic trough power plants. J Sol Energy Eng. 2009.  https://doi.org/10.1115/1.3197844.CrossRefGoogle Scholar
  24. 24.
    ASTM D790-17. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. In: ASTM International. West Conshohocken. 2017. www.astm.org. Accessed 17 March 2019.
  25. 25.
    Siegel N, Gross M, Ho C, Phan T, Yuan J. Physical properties of solid particle thermal energy storage media for concentrating solar power applications. Energy Proc. 2014;49:1015–23.CrossRefGoogle Scholar
  26. 26.
    Nigay PM. Etude des transformations microstructurales de mélanges argile biomasse lors de la cuisson et relations avec les propriétés mécaniques et thermiques. Ph.D. thesis. Université de Toulouse; 2015.Google Scholar
  27. 27.
    Cobîrzan N, Thalmaier G, Balog AA, Constantinescu H, Timiş I, Streza M. Thermophysical properties of fired clay bricks with waste ceramics and paper pulp as pore-forming agent. J Therm Anal Calorim. 2018;134(1):843–51.CrossRefGoogle Scholar
  28. 28.
    Papadopoulou DN, Lalia-Kantouri M, Stratis JA. Thermal and mineralogical contribution to the ancient ceramics and natural clays characterization. J Therm Anal Calorim. 2006;84(1):39–45.CrossRefGoogle Scholar
  29. 29.
    Wijesundara M, Azevedo R. Silicon carbide microsystems for harsh environments. Berlin: Springer; 2011. p. 15–29.CrossRefGoogle Scholar
  30. 30.
    Abderrazak H, Hmida ESBH. Silicon carbide: synthesis and properties. In: Gerhardt R, editor. Properties and applications of silicon carbide. Rijeka: In Tech; 2011. p. 351–88.Google Scholar
  31. 31.
    Kaur S, Riedel R, Ionescu E. Pressureless fabrication of dense monolithic SiC ceramics from a polycarbosilane. J Eur Ceram Soc. 2014;34:3571–8.CrossRefGoogle Scholar
  32. 32.
    Slack GA. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J Appl Phys. 1964;35:3560–6.CrossRefGoogle Scholar
  33. 33.
    Burgemeister EA, von Muench W, Pettenpaul E. Thermal conductivity and electrical properties of 6H silicon carbide. J Appl Phys. 1979;50:5790–4.CrossRefGoogle Scholar
  34. 34.
    Román-Manso B, Chevillotte Y, Osendi MI, Belmonte M, Miranzo P. Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets. J Eur Ceram Soc. 2016;36:3987–93.CrossRefGoogle Scholar
  35. 35.
    Earnest CM. Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens. In: Smykatz-Kloss W, Warne SSJ, editors. Thermal analysis in the geosciences. Berlin: Springer; 1991. p. 270–90.CrossRefGoogle Scholar
  36. 36.
    Silvestroni L, Landi E, Bejtka K, Chiodoni A, Sciti D. Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers. J Eur Ceram Soc. 2015;35:4377–87.CrossRefGoogle Scholar
  37. 37.
    Zhu J, Shi P, Wang F, Zhao T. Preparation of the moon-white glaze by carbothermic reduction of Fe2O3 and SiC. J Eur Ceram Soc. 2015;35:4603–9.CrossRefGoogle Scholar
  38. 38.
    Nigay PM, Cutard T, Nzihou A. The impact of heat treatment on the microstructure of a clay ceramic and its thermal and mechanical properties. Ceram Int. 2017;43:1747–54.CrossRefGoogle Scholar
  39. 39.
    Malakkal L, Szpunar B, Siripurapu RK, Szpunar JA. Thermal conductivity of bulk and nanowire of cubic-SiC from ab initio calculations. Comput Mater Sci. 2017;128:249–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Université de Toulouse, IMT Mines Albi, CNRS, Centre RAPSODEEAlbi Cedex 09France
  2. 2.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  3. 3.PRAYON SA, Service R&DEngisBelgium
  4. 4.Innovation, OCP SAEl JadidaMorocco
  5. 5.Chemical and Biochemical SciencesMohamed VI Polytechnic UniversityBenguérirMorocco

Personalised recommendations