Influence of the atmosphere on the decomposition of vegetable oils: study of the profiles of FTIR spectra and evolution of gaseous products

  • Geovane Chacon de CarvalhoEmail author
  • Maria de Fátima Vitória de Moura
  • Heloísa Gabriela Clemente de Castro
  • Joadir Humberto da Silva Júnior
  • Henrique Eduardo Bezerra da Silva
  • Klécia Morais dos Santos
  • Zelita Maria Santos Rocha


The thermal stability of vegetable oils may be one of important properties in their use in the food industry, cosmetics and agro-industry, especially for high-temperature applications and there are several methods available to evaluate its thermal stability. In order to investigate the thermal behavior of vegetable oils extracted from seeds of Bixa orellana L., of Caryodendron orinocense K., of Moringa oleifera L., of Chenopodium quinoa W., of Coffea robusta L., of Syzygium cumini and oil extracted from leaves and flowers of M. oleifera L., the following analyzes were performed: FTIR, thermogravimetric study and analysis of gases evolved in thermal decomposition. The spectra obtained through the FTIR showed that all oils have similar characteristics, changing the peak intensity between the samples, which can be used to characterize a sample lot, since the composition can vary from lot to lot. It can be observed that the atmosphere of thermal decomposition influences the profiles of the TG and DTG curves. The samples when submitted to the atmosphere of synthetic air exhibited three mass losses while in atmosphere of N2 they exhibited a single stage of decomposition. The FTIR spectra of the decomposition products of the vegetable oils obtained in the atmosphere of synthetic air and nitrogen are useful data for the characterization of vegetable oils. In relation to the evolution profiles of the decomposition products, in synthetic air and nitrogen, the intensity and the profile of the temperature absorbance plot are related to the composition of each sample.


Vegetable oils Thermal analysis TG–FTIR Emitted gas analysis 



The authors acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support and Plantus Industry for providing vegetable oils.


  1. 1.
    Freire LMS, Bicudo TC, Rosenhaim R, Sinfrônio FSM, Botelho JR, Carvalho Filho JR, Santos IMG, Fernandes VJ Jr, Antoniosi Filho NR, Souza AG. Thermal investigation of oil and biodiesel from Jatropha curcas L. J Therm Anal Calorim. 2009;96:1029–33.CrossRefGoogle Scholar
  2. 2.
    Santos AD, Caldeira VS, Farias M, Araújo A, Souza L, Barros A. Characterization and kinetic study of sunflower oil and biodiesel. J Therm Anal Calorim. 2011;106:747–51.CrossRefGoogle Scholar
  3. 3.
    Santos JCO, Santos AV, Souza AG. Thermal analysis in quality control of the olive oil. Eur J Pharm Sci. 2001;13:S23–4.Google Scholar
  4. 4.
    Santos JCO, Santos AV, Souza AG, Prasad S, Santos IMG. Thermal stability and kinetic study on thermal decomposition of commercial edible oils by thermogravimetry. J Food Sci. 2002;67:1393–8.CrossRefGoogle Scholar
  5. 5.
    Santos JCO, Santos IMG, Conceição MM, Porto SL, Trindade MFS, Souza AG, Prasad S, Fernandes VJ Jr, Araújo AS. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J Therm Anal Calorim. 2004;75:419–28.CrossRefGoogle Scholar
  6. 6.
    Zhang Q, Saleh ASM, Chen J, Sun P, Shen Q. Monitoring of thermal behavior and decomposition products of soybean oil. An application of synchronous thermal analyzer coupled with Fourier transform infrared spectrometry and quadrupole mass spectrometry. J Therm Anal Calorim. 2014;115:19–29.CrossRefGoogle Scholar
  7. 7.
    Tudorachi N, Mustata F. Thermal degradation and evolved gas analysis of some vegetable oils using TG/FT–IR/MS technique. J Therm Anal Calorim. 2015;119:1703–11.CrossRefGoogle Scholar
  8. 8.
    Beeb KR, Pell RJ, Seasholtz B. Chemometrics: a pratical guide. Nova Iorque: Wiley; 1998.Google Scholar
  9. 9.
    Silverstein RM, Webster FX, Kiemble DJ. Spectrometric identification of organic compounds. 7th ed. Hoboken: Wiley; 2005.Google Scholar
  10. 10.
    Skoog DA, Holler FJ, Crouch RS. Princípios de Análises Instrumental. 6th ed. Porto Alegre: Bookman; 2007.Google Scholar
  11. 11.
    Ramalho EFSM, Santos IMG, Maia AS, Souza AL, Souza AG. Thermal characterization of the poultry fat biodiesel. J Therm Anal Calorim. 2011;106:825–9.CrossRefGoogle Scholar
  12. 12.
    Zahir E, Saeed R, Hameed MA, Yousuf A. Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier transform-infrared (FT-IR) Spectroscopy. Arab J Chem. 2017;10:S3870–6.CrossRefGoogle Scholar
  13. 13.
    Santos AGD, Caldeira VOS, Souza LD, Oliveira DS, Araújo AS, Luz GE Jr. Study of the thermal stability by thermogravimetry for oil, biodiesel and blend (B10) of different oilseeds. J Therm Anal Calorim. 2016;123:2021–8.CrossRefGoogle Scholar
  14. 14.
    Parshetti GK, Quek A, Betha R, Balasubramanian R. TGA–FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal. Fuel Process Technol. 2014;118:228–34.CrossRefGoogle Scholar
  15. 15.
    Pavia DL, Lampman GM, Kriz GS, Vyvyam JR. Introdução a espectroscopia. São Paulo: Cengage Learning; 2013.Google Scholar
  16. 16.
    Osmont A, Catoire L, Gökalp I, Swihart MT. Thermochemistry of C–C and C–H bond breaking in fatty acid methyl esters. Energy Fuels. 2007;21:2027–32.CrossRefGoogle Scholar
  17. 17.
    Melero JA, Clavero MM, Calleja G, García A, Miravalles RN, Galindo T. Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil. Energy Fuels. 2010;24:707–17.CrossRefGoogle Scholar
  18. 18.
    Li H, Niu S, Lu C, Wang Y. Comprehensive investigation of the thermal degradation characteristics of biodiesel and its feedstock oil through TGA–FTIR. Energy Fuels. 2015;29:5145–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Geovane Chacon de Carvalho
    • 1
    Email author
  • Maria de Fátima Vitória de Moura
    • 2
  • Heloísa Gabriela Clemente de Castro
    • 1
  • Joadir Humberto da Silva Júnior
    • 1
  • Henrique Eduardo Bezerra da Silva
    • 1
  • Klécia Morais dos Santos
    • 1
  • Zelita Maria Santos Rocha
    • 2
  1. 1.Institute of ChemistryUniversity of Rio Grande do NorteNatalBrazil
  2. 2.Pharmacy CollegeUniversity of Rio Grande do NorteNatalBrazil

Personalised recommendations