Ternary phase diagrams and metastable zone width of azithromycin in water–acetone solvent mixtures

  • Xiaoxue Cao
  • Shaochang Ji
  • Wenjie Kuang
  • Anping Liao
  • Ping Lan
  • Jinyan ZhangEmail author


The transition water activity of azithromycin in water–acetone solvent mixtures at temperatures 293.15 K, 298.15 K, 303.15 K and 308.15 K was determined under atmospheric pressure, and the ternary phase diagrams for the system of water–azithromycin–acetone at varying temperature were described. Results showed that azithromycin monohydrate can be obtained by lowering the water activity and the transition water activity in acetone–water solvent mixtures at temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K) was 0.17, 0.21, 0.242 and 0.287, which increased with temperature. Besides, the metastable zone width (MSZW) of azithromycin dihydrate in water–acetone solvent mixtures was measured by laser method. The effect of initial temperature and cooling rate on MSZW of azithromycin dihydrate was studied. It was observed that the MSZW decreases with the increase in initial temperature. Nevertheless, the MSZW becomes wider by enhancing the cooling rate. All the results are of great importance to develop a crystallization process for manufacturing azithromycin hydrate and could be helpful to other solvate transformation research.


Azithromycin Water activity Ternary phase diagram Metastable zone width 



This work was supported by the National Natural Science Foundation of China (21606056), the Guangxi Natural Science Foundation of China (2017GXNSFAA198091), the Guangxi biological polysaccharide separation, purification and modification research platform (GKZY18076005), the Xiangsihu Young Scholars Innovative Research Team of Guangxi University For Nationalities (2016) and the Postgraduate Research Innovation Project of Guangxi University of Nationalities gxun-chxzb2017001 (gxun-chxzs2017128), gxun-chxzb2018001 (gxun-chxps201817).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Bechtloff B, Nordhoff S, Ulrich J. Pseudopolymorphs in industrial use. Cryst Res Technol. 2015;36(12):1315–28.Google Scholar
  2. 2.
    Brittain HG. Polymorphism and solvatomorphism 2010. J Pharm Sci. 2012;101(2):464–84.PubMedGoogle Scholar
  3. 3.
    Vippagunta SR, Brittain HG, Grant DJW. Crystalline solids. Adv Drug Deliv Rev. 2001;48:3–26.PubMedGoogle Scholar
  4. 4.
    Zhu HJ, Yuen CM, Grant DJW. Influence of water activity in organic solvent plus water mixtures on the nature of the crystallizing drug phase. 1. Theophylline. Int J Pharm. 1996;135(1–2):151–60.Google Scholar
  5. 5.
    Li Y, Chow PS, Tan RBH. Effect of water activity on the transformation between hydrate and anhydrate of carbamazepine. Organ Process Res Dev. 2008;12(2):264–70.Google Scholar
  6. 6.
    Shefter E, Higuchi T. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. J Pharm Sci. 1963;52(8):781–91.PubMedGoogle Scholar
  7. 7.
    Wang XF, Dang LP, Black S, Zhang XY, Wei HY. How to crystallize anhydrous racemic tartaric acid from an ethanol–water solution. Ind Eng Chem Res. 2012;51(6):2789–96.Google Scholar
  8. 8.
    Tang XH, Li Y, Liu J, Zhang Y, Wang XZ. PAT aided Identification of operational spaces leading to tailored crystal size distributions in azithromycin crystallization via coordinated cooling and solution mediated phase transition. Organ Process Res Dev. 2017;21(12):1963–71.Google Scholar
  9. 9.
    Timoumi S, Mangin D, Peczalski R, Zagrouba F, Andrieu J. Stability and thermophysical properties of azithromycin dihydrate. Arab J Chem. 2014;7(2):189–95.Google Scholar
  10. 10.
    Gandhi R, Pillai O, Thilagavathi R, Gopalakrishnan B, Kaul CL, Panchagnula R. Characterization of azithromycin hydrates. Eur J Pharm Sci. 2002;16(3):175–84.PubMedGoogle Scholar
  11. 11.
    Dunn CJ, Barradell LB. Azithromycin. Azithromycin: a review of its pharmacological properties and use as 3-day therapy in respiratory tract infections. Drugs. 1996;51(3):483–505.PubMedGoogle Scholar
  12. 12.
    Kobrehel G, Lazarevski G, Dokić S, Kolacny-Babić L, Kucisec-Iepes N, Cvrlje M. Synthesis and antibacterial activity of O-methylazithromycin derivatives. J Antibiot. 1992;45(4):527–34.PubMedGoogle Scholar
  13. 13.
    Peters DH, Friedel HA, Mctavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1992;44(5):750–99.PubMedGoogle Scholar
  14. 14.
    Langtry HD, Balfour JA. Azithromycin. A review of its use in paediatric infectious diseases. Drugs. 1998;56(2):273–97.PubMedGoogle Scholar
  15. 15.
    Liu MJ, Yin DP, Fu HL, Zhang YL, Liu MX, Zhou JY, Qing XY, Wu WB. Solid–liquid equilibrium of azithromycin in water + 1,2-propanediol solutions from (289.35 to 319.15) K. J Mol Liq. 2014;199:51–6.Google Scholar
  16. 16.
    Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv Drug Deliv Rev. 2017;117:25–46.PubMedGoogle Scholar
  17. 17.
    Neglur R, Hosten E, Aucamp M, Liebenberg W, Grooff D. Water and the relationship to the crystal structure stability of azithromycin. J Therm Anal Calorim. 2018;132(1):373–84.Google Scholar
  18. 18.
    Jin MT, Xu Z, Li L, Wang LP, Lu HJ, Xie C, Hao HX. Ternary phase diagrams and solvate transformation thermodynamics of omeprazole sodium in different solvent mixtures. Chin J Chem Eng. 2019;27(2):362–8.Google Scholar
  19. 19.
    Yu X, Wang H, Guo Y. Phase equilibrium and solvation effect of the ternary mixture solvent system (LiCl + CH3OH + H2O) at 298.15, 308.15 and 318.15 K. J Solut Chem. 2019;48(4):515–27.Google Scholar
  20. 20.
    Wang H, Li L, Lv R. Measurement and correlation of liquid-liquid equilibria for the ternary methyl isobutyl ketone + phenol + water system at (333.15, 343.15 and 353.15) K under atmospheric pressure. J Solut Chem. 2016;45(6):875–84.Google Scholar
  21. 21.
    Feng WX, Zhang QZ, Chen Y. Liquid–liquid equilibrium of water + 1-propanol or 1-butanol + dibutyl ether ternary systems: measurements and correlation at three temperatures. J Solut Chem. 2018;47(3):498–510.Google Scholar
  22. 22.
    Ding SP, Yin QX, Du W, Sun XW, Li GP, Mao YF, Hao HX. Ternary phase diagram of phenanthrene and carbazole in different solvents and its application in the separation of them. J Chem Thermodyn. 2019;131:431–40.Google Scholar
  23. 23.
    Zhang XY, Wang X, Hao L, Yang XW, Dang LP, Wei HY. Solubility and metastable zone width of dl-tartaric acid in aqueous solution. Cryst Res Technol. 2012;47(11):1153–63.Google Scholar
  24. 24.
    Wang LP, Feng HT, Peng JY, Dong NJ, Li W, Dong YP. Solubility, metastable zone width, and nucleation kinetics of sodium dichromate dihydrate. J Chem Eng Data. 2015;60(1):185–91.Google Scholar
  25. 25.
    Zhang Y, Li Z. Effects of cooling rate, saturation temperature, and solvent on the metastable zone width of triethanolamine hydrochloride. Ind Eng Chem Res. 2011;50(10):6375–81.Google Scholar
  26. 26.
    Kashchiev D, Borissova A, Hammond RB, Roberts KJ. Effect of cooling rate on the critical undercooling for crystallization. J Cryst Growth. 2010;312(5):698–704.Google Scholar
  27. 27.
    Peng JY, Dong YP, Nie Z, Kong FZ, Meng QF, Li W. Solubility and metastable zone width measurement of borax decahydrate in potassium chloride solution. J Chem Eng Data. 2012;57(3):890–5.Google Scholar
  28. 28.
    Kadam SS, Kulkarni SA, Ribera RC, Stankiewicz AI, Horst JH, Kramer HJM. A new view on the metastable zone width during cooling crystallization. Chem Eng Sci. 2012;72:10–9.Google Scholar
  29. 29.
    Nyvlt J. Kinetics of nucleation in solutions. J Cryst Growth. 1968;3–4:377–83.Google Scholar
  30. 30.
    Black S, Muller F. On the effect of temperature on aqueous solubility of organic solids. Organ Process Res Dev. 2010;14(3):661–5.Google Scholar
  31. 31.
    Wang LP, Feng HT, Peng J, Dong YP, Peng JY, Li W. Solubility, metastable zone width and nucleation kinetics of sodium dichromate dihydrate. J Chem Eng Data. 2014;60(1):185–91.Google Scholar
  32. 32.
    Xu DH, Xiong X, Xu DJ, Zhong YJ, Wang XL, Zhang ZY, Yang XS. Experimental determination of solubility and metastable zone width of ammonium dihydrogen phosphate in (NH4)2SO4 + water and NH4F + water systems. Fluid Phase Equilib. 2018;468:1–8.Google Scholar
  33. 33.
    Wang H, Du B, Min W. Study of the solubility, supersolubility and metastable zone width of Li2CO3 in the LiCl–NaCl–KCl–Na2SO4 system from 293.15 to 353.15 K. J Chem Eng Data. 2018;63(5):1429–34.Google Scholar
  34. 34.
    Chen LJ, Song L, Lan GC, Wang JL. Solubility and metastable zone width measurement of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in ethanol + water. Chin J Chem Eng. 2017;25(5):646–51.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Xiaoxue Cao
    • 1
  • Shaochang Ji
    • 2
  • Wenjie Kuang
    • 1
  • Anping Liao
    • 1
  • Ping Lan
    • 1
  • Jinyan Zhang
    • 1
    Email author
  1. 1.School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory for Polysaccharide Materials and ModificationsKey Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education InstitutesNanningChina
  2. 2.Guangxi Tobacco Monopoly BureauNanningPeople’s Republic of China

Personalised recommendations