Advertisement

Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M62+Al3(OH)18][A+(SO4)2] 12H2O (M2+ = Mn, Mg, Zn; A+ = Li, Na, K)

  • Anne Raquel Sotiles
  • Neffer Arvey Gomez Gomez
  • Fernando WypychEmail author
Article
  • 28 Downloads

Abstract

The synthesized phases with chemical composition \(\left[ {{\text{M}}^{2 + }_{6} {\text{Al}}_{3} \left( {\text{OH}} \right)_{18} } \right]\left[ {{\text{A}}^{ + } \left( {{\text{SO}}_{4} } \right)_{2} } \right]12{\text{H}}_{2} {\text{O}}\) (M2+ = Mn, Mg, Zn; A+ = Li, Na or K) were evaluated in relation to their thermal behavior by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). In the shigaite (M2+ = Mn), natroglaucocerinite (M2+ = Zn) and motukoreaite (M2+ = Mg) phases, the TGA measurements indicated that all samples were dehydrated up to 200 °C in two steps, followed by dehydroxylation above 300 °C. After the thermal treatment at 1000 °C, formation of oxides/spinels were observed for the shigaite and natroglaucocerinite phases, while for motukoreaite, oxides, spinels and MgSO4 were detected. XRD indicated a reduction in the basal distance from around 11 Å for the fully hydrated phases to around 7 Å for the dehydrated phases. The thermal treatments of some samples at 100 °C, 150 °C and 200 °C indicated that in all phases, intercalated sulfate and alkaline metal ions can be dehydrated and rehydrated. As indicated by FTIR, at 200 °C sulfate could be grafted to the layers and at 300 °C, for all the phases, a stable mixture of amorphous materials was obtained, which could not be rehydrated.

Graphic abstract

Keywords

Layered double hydroxide Intercalation compounds Sulfate Alkaline metal cations 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001, CNPq (projects 303846/2014-3, 400117/2016-9) and FINEP. Prof. Marcos Rogério Mafra performed the TGA analysis. ARS and NAGG received PhD scholarships from CAPES and CNPq, respectively.

References

  1. 1.
    Liu Y, Gao Y, Wang Q, Lin W. The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: a critical review. Dalton Trans. 2018;47:14827–40.CrossRefGoogle Scholar
  2. 2.
    Wu MJ, Wu JZ, Zhang J, Chen H, Zhou JZ, Qian GR, Xu ZP, Du Z, Rao QL. A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. Catal Sci Technol. 2018;8:1207–28.CrossRefGoogle Scholar
  3. 3.
    Mishra G, Dash B, Pandey S. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci. 2018;153:172–86.CrossRefGoogle Scholar
  4. 4.
    He X, Qiu X, Hu C, Liu Y. Treatment of heavy metal ions in wastewater using layered double hydroxides: a review. J Dispers Sci Technol. 2018;39:792–801.CrossRefGoogle Scholar
  5. 5.
    Baig N, Sajid M. Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: a review. Trends Environ Anal Chem. 2017;16:1–15.CrossRefGoogle Scholar
  6. 6.
    Theiss FL, Ayoko GA, Frost RL. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—a review. Appl Surf Sci. 2016;383:200–13.CrossRefGoogle Scholar
  7. 7.
    Mohapatra L, Parida K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J Mater Chem. 2016;4:10744–66.CrossRefGoogle Scholar
  8. 8.
    Rives V, del Arco M, Martin C. Intercalation of drugs in layered double hydroxides and their controlled release: a review. Appl Clay Sci. 2014;88–89:239–69.CrossRefGoogle Scholar
  9. 9.
    Nalawade P, Aware B, Kadam VJ, Hirlekar R. Layer double hydroxides: a review. J Sci Ind Res. 2009;68:267–72.Google Scholar
  10. 10.
    Rodgers KA, Chisholm JE, Davis RJ, Nelson CS. Motukoreaite, a new hydrated carbonate, sulfate, and hydroxide of magnesium and aluminum from Auckland, New Zealand. Miner Mag. 1977;41:389–90.CrossRefGoogle Scholar
  11. 11.
    Witzke T, Pöllmann H, Vogel A. Struktur und synthese von [Zn8-xAlx(OH)16][(SO4)x/2+y/2.Nay(H2O)6]. Zeit Kristal. 1995;9:S252.Google Scholar
  12. 12.
    Cooper MA, Hawthorne FC. The crystal structure of Shigaite, [AlMn2 2+(OH)6]3(SO4)2.Na(H2O)6(H2O)6, a hydrotalcite-group mineral. Can Miner. 1996;34:91–7.Google Scholar
  13. 13.
    Peacor DR, Dunn PJ, Kato A, Wicks FJ. Shigaite, a new manganese aluminum sulfate mineral from the loi mine, Shiga, Japan. Neues Jahrb Miner Monatsh. 1985;1985:453–7.Google Scholar
  14. 14.
    Pring A, Slade PG, Birch WD. Shigaite from iron monarch, South Australia. Miner Mag. 1992;56:417–9.CrossRefGoogle Scholar
  15. 15.
    Huminicki DMC, Hawthorne FC. The crystal structure of Nikischerite, NaFe6 2+Al3(SO4)2(OH)18.(H2O)12, a mineral of the Shigaite group. Can Miner. 2003;41:79–82.CrossRefGoogle Scholar
  16. 16.
    Christiansen BC, Balic-Zunic T, Petit PO, Frandsen C, Mørup S, Geckeis H, Katerinopoulou A, SvaneStipp SL. Composition and structure of an iron-bearing, layered double hydroxide (LDH)—green rust sodium sulphate. Geochim Cosmochim Acta. 2009;73:3579–92.CrossRefGoogle Scholar
  17. 17.
    Nickel EH, Wildman JE. Hydrohonessite—a new hydrated Ni–Fe hydroxy-sulphate mineral; Its relationship to honessite, carrboydite, and minerals of the Pyroaurite group. Miner Mag. 1981;44:333–7.CrossRefGoogle Scholar
  18. 18.
    Miyata S, Okada A. Synthesis of hydrotalcite-like compounds and their physico-chemical properties—the systems Mg2+–Al3+–SO4 2− and Mg2+–Al3+–CrO4 2−. Clays Clay Miner. 1977;25:14–8.CrossRefGoogle Scholar
  19. 19.
    El Malki K, de Roy A, Besse JP. New copper–chromium layered double hydroxide compound: discussion of pillaring with intercalated tetrahedral anions. Eur J Solid State Inorg Chem. 1989;26:339–51.Google Scholar
  20. 20.
    Khaldi M, de Roy A, Chaouch M, Besse JP. New varieties of zinc–chromium–sulfate lamellar double hydroxides. J Solid State Chem. 1997;130:66–73.CrossRefGoogle Scholar
  21. 21.
    Radha S, Antonyraj CA, Kamath PV, Kannan S. Polytype transformations in the SO4 2−containing layered double hydroxides of zinc with aluminum and chromium: the metal hydroxide layer as a structural synthon. Z Anorg Allg Chem. 2010;636:2658–64.CrossRefGoogle Scholar
  22. 22.
    Radha S, Kamat PV. Polytypism in sulfate-intercalated layered double hydroxides of Zn and M(III) (M = Al, Cr): observation of cation ordering in the metal hydroxide layers. Inorg Chem. 2013;52:4834–41.CrossRefGoogle Scholar
  23. 23.
    Mostarih R, de Roy A. Thermal behavior of a zinc–chromium–sulfate lamellar double hydroxide revisited as a function of vacuum and moisture parameters. J Phys Chem Solids. 2006;67:1058–62.CrossRefGoogle Scholar
  24. 24.
    Sotiles AR, Baika LM, Grassi MT, Wypych F. Cation exchange reactions in layered double hydroxides intercalated with sulfate and alkaline cations (A(H2O)6)[M6+2 Al3(OH)18(SO4)2].6H2O (M+2 = Mn, Mg, Zn; A+= Li, Na, K). J Amer Chem Soc. 2019;141:531–40.CrossRefGoogle Scholar
  25. 25.
    Kameda T, Yuki F, Toshiaki Y. Thermal decomposition of SO4 2− intercalated Mg–Al layered double hydroxide—elimination behavior of sulfur oxides. J Therm Anal Calorim. 2011;110:641–6.CrossRefGoogle Scholar
  26. 26.
    Wachowiak J, Pieczka A. Motukoreaite from the Kłodawa Salt Dome, Central Poland. Miner Mag. 2016;80:277–89.CrossRefGoogle Scholar
  27. 27.
    Zhang H, Wen X, Wang Y. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc–iron layered double hydroxide by one-step coprecipitation route. J Solid State Chem. 2007;180:1636–47.CrossRefGoogle Scholar
  28. 28.
    Chitrakar R, Sonoda A, Makita Y, Hirotsu T. Synthesis and bromate reduction of sulfate intercalated Fe(II)–Al(III) layered double hydroxides. Sep Purif Technol. 2011;80:652–7.CrossRefGoogle Scholar
  29. 29.
    Theiss FL, Ayoko GA, Frost RL. Thermogravimetric analysis of selected layered double hydroxides. J Therm Anal Calorim. 2013;112:649–57.CrossRefGoogle Scholar
  30. 30.
    Theiss FL, Palmer SJ, Ayoko GA, Frost RL. Sulfate intercalated layered double hydroxides prepared by the reformation effect. J Therm Anal Calorim. 2012;107:1123–8.CrossRefGoogle Scholar
  31. 31.
    Vulic T, Reitzmann A, Ranogajec J, Marinkovic-Neducin R. The influence of synthesis method and Mg–Al–Fe content on the thermal stability of layered double hydroxides. J Therm Anal Calorim. 2012;110:227–33.CrossRefGoogle Scholar
  32. 32.
    Peak D, Ford RG, Sparks DL. An in Situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J Colloid Interface Sci. 1999;218:289–99.CrossRefGoogle Scholar
  33. 33.
    Constantino VRL, Pinnavaia TJ. Basic Properties of Mg1-x2+Alx3+ layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions. Inorg Chem. 1995;34:883–92.CrossRefGoogle Scholar
  34. 34.
    Wright CMR, Ruengkajorn K, Kilpatrick AFR, Buffet JC, O’Hare D. Controlling the surface hydroxyl concentration by thermal treatment of layered double hydroxides. Inorg Chem. 2017;56:7842–50.CrossRefGoogle Scholar
  35. 35.
    Frost RL, Theiss FL, López A, Scholz R. Vibrational spectroscopic study of the sulphate mineral glaucocerinite (Zn,Cu)10Al6(SO4)3(OH)32.18H2O—a natural layered double hydroxide. Spectrochim Acta A Mol Biomol Spectrosc. 2014;127:349–54.CrossRefGoogle Scholar
  36. 36.
    Guimaraes JL, Marangoni R, Ramos LP, Wypych F. Covalent grafting of ethylene glycol into the Zn–Al–CO3 layered double hydroxide. J Colloid Interface Sci. 2000;227:445–51.CrossRefGoogle Scholar
  37. 37.
    Elhalil A, Farnane M, Machrouhi A, Mahjoubi FZ, Elmoubarki R, Tounsadi H, Abdennouri M, Barka N. Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants. J Sci Adv Mater Devices. 2018;3:188–95.CrossRefGoogle Scholar
  38. 38.
    Cheng X, Huang X, Wang X, Sun D. Influence of calcination on the adsorptive removal of phosphate by Zn–Al layered double hydroxides from excess sludge liquor. J Hazard Mater. 2010;177:516–23.CrossRefGoogle Scholar
  39. 39.
    Lv L, He J, Wei M, Evans DG, Duan X. Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. J Hazard Mater. 2005;133:119–28.CrossRefGoogle Scholar
  40. 40.
    Rani KM, Palanisamy PN. Synthesis and characterization of mesoporous, nanostructured zinc aluminium carbonate layered double hydroxides (ZAC-LDHs) and its calcined product (CZA-LDH). J Inorg Organomet Polym Mater. 2018;28:1127–35.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations