Advertisement

Compatibility study of hydroxychloroquine sulfate with pharmaceutical excipients using thermal and nonthermal techniques for the development of hard capsules

  • Amanda Naves Ferreira Moraes
  • Luís Antônio Dantas Silva
  • Maysa Aparecida de Oliveira
  • Eder Magno de Oliveira
  • Thais Leite Nascimento
  • Eliana Martins Lima
  • Ieda Maria Sapateiro Torres
  • Danielle Guimarães Almeida DinizEmail author
Article

Abstract

Hydroxychloroquine is effectively used in the treatment for malaria, lupus erythematosus and rheumatoid arthritis. The study of drug–excipient compatibility is an important tool for the development of safe and effective pharmaceutical forms. The present study describes the use of thermal and nonthermal techniques for evaluating the physicochemical compatibility of hydroxychloroquine with excipients for the development of solid dosage forms, including microcrystalline cellulose, corn starch, mannitol, magnesium stearate and colloidal silicon dioxide. The analytical techniques employed to evaluate the drug and the drug–excipient interactions in solid binary mixtures (1:1 w:w) were differential scanning calorimetry (DSC), thermogravimetry, Fourier transform infrared spectroscopy (FTIR) and isothermal stress test. Four different formulations were prepared and drug dissolution test was determined by rotating-basket system method in water. Evidence of solid-state interactions of hydroxychloroquine and mannitol, magnesium stearate and colloidal silicon dioxide was observed in the DSC analysis and subsequently confirmed by FTIR; however, no degradation profile was observed by HPLC and no interference was seen in the drug dissolution rate and no change in physicochemical properties of hydroxychloroquine was observed. The combination of techniques is very important to correctly identify drug–excipients incompatibilities in the earliest stage of a formulation design in order to ensure the choice of suitable excipients for the development of stable and effective dosage forms of hydroxychloroquine.

Keywords

Thermal analysis DSC TG FTIR Isothermal stress test Compatibility study 

Notes

Acknowledgements

This work was financially supported by the following Brazilian research funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Pesquisas (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Financing code 001), Fundação de Apoio à Pesquisa da Universidade Federal de Goiás (FUNAPE) and Laboratório Central de Saúde Pública (LACEN-GO).

References

  1. 1.
    Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution in the in vivo bioavailability. Pharm Res. 1995;12:413–20.CrossRefGoogle Scholar
  2. 2.
    Verbeeck RK, Junginger HE, Midha KK, Shah VP, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: chloroquine phosphate, chloroquine sulfate, and chloroquine hydrochloride. J Pharm Sci. 2005;94:1389–95.CrossRefGoogle Scholar
  3. 3.
    Cook JA, Davit BM, Polli JE. Impact of biopharmaceutics classification system-based biowaivers. Mol Pharm. 2010;7:1539–44.CrossRefGoogle Scholar
  4. 4.
    Bergström CAS, Andersson SBE, Fagerberg JH, Ragnarsson G, Lindahl A. Is the full potential of the biopharmaceutics classification system reached. Eur J Pharm Sci. 2014;57:224–31.CrossRefGoogle Scholar
  5. 5.
    Brazil, Ministério da Saúde - Agência Nacional de Vigilância Sanitária (ANVISA). Resolução - RDC Nº 37, de 3 de agosto de 2011. Dispõe sobre o Guia para isenção e substituição de estudos de biodisponibilidade relativa/bioequivalência e dá outras providências. 2011. http://www.brasilsus.com.br/legislacoes/anvisa/109151-37.html Accessed 15 Feb 2017.
  6. 6.
    Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Immunol. 2012;42:145–53.Google Scholar
  7. 7.
    Costedoat-Chalumeau N, Dunogué B, Leroux G, Morel N, Jallouli M, Le Guern V, Piette JC, Brézin AP, Melles RB, Marmor MF. A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin Rev Allergy Immunol. 2015;49:317–26.CrossRefGoogle Scholar
  8. 8.
    Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015;23:231–69.CrossRefGoogle Scholar
  9. 9.
    Bharate SS, Bharate SB, Bajaj AN. Incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1:3–26.Google Scholar
  10. 10.
    Chadha R, Bhandari S. Drug-excipient compatibility screening—role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97.CrossRefGoogle Scholar
  11. 11.
    da Silveira LM, Fiorot AB, Xavier TP, Yoshida MI, de Oliveira MA. Drug-excipient compatibility assessment of solid formulations containing meloxicam. Eur J Pharm Sci. 2018;112:146–51.CrossRefGoogle Scholar
  12. 12.
    Veiga A, Oliveira PR, Bernardi LS, Mendes C, Silva MAS, Sangoi MS, Janissek PR, Murakami FS. Solid-state compatibility studies of a drug without melting point: the case of omeprazole sodium. J Therm Anal Calorim. 2018;131:3201–9.CrossRefGoogle Scholar
  13. 13.
    Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, Roberts MS. Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets. Eur J Pharm Biopharm. 2009;73:404–13.CrossRefGoogle Scholar
  14. 14.
    Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int J Pharm. 2014;473:64–72.CrossRefGoogle Scholar
  15. 15.
    Ferreira AO. Guia Prático da Farmácia Magistral. 4th ed. Amsterdam: Pharmabooks; 2010.Google Scholar
  16. 16.
    Teleginski LK, Maciel AB, Mendes C, Silva MAS, Bernardi LS, de Oliveira PR. Fluconazole-excipient compatibility studies as the first step in the development of a formulation candidate for biowaiver. J Therm Anal Calorim. 2015;120:771–81.CrossRefGoogle Scholar
  17. 17.
    Démuth B, Galata DL, Szabó E, Nagy B, Farkas A, Balogh A, Hirsch E, Pataki H, Rapi Z, Bezúr L, Vigh T, Verreck G, Szalay Z, Demeter Á, Marosi G, Nagy ZK. Investigation of deteriorated dissolution of amorphous itraconazole: description of incompatibility with magnesium stearate and possible solutions. Mol Pharm. 2017;14:3927–34.CrossRefGoogle Scholar
  18. 18.
    Jonat S, Hasenzahl S, Gray A, Schmidt PC. Mechanism of glidants: investigation of the effect of different colloidal silicon dioxide types on powder flow by atomic force and scanning electron microscopy. J Pharm Sci. 2004;93:2635–44.CrossRefGoogle Scholar
  19. 19.
    Ghaderi F, Nemati M, Siahi-Shadbad MR, Valizadeh H, Monajjemzadeh F. Physicochemical evaluation and non-isothermal kinetic study of the drug–excipient interaction between doxepin and lactose. Powder Technol. 2015;286:845–55.CrossRefGoogle Scholar
  20. 20.
    Samanidou VF, Evaggelopoulou EN, Papadoyannis IN. Simultaneous determination of quinine and chloroquine anti-malarial agents in pharmaceuticals and biological fluids by HPLC and fluorescence detection. J Pharm Biomed Anal. 2005;38:21–8.CrossRefGoogle Scholar
  21. 21.
    Brazil, Ministério da Saúde Agência - Nacional de Vigilância Sanitária. Resolução nº 166: dispõe sobre a validação de métodos analíticos e dá outras providências. 2017. http://portal.anvisa.gov.br/documents/10181/2721567/RDC_166_2017_COMP.pdf/d5fb92b3-6c6b-4130-8670-4e3263763401 Accessed 17 Oct 2017.
  22. 22.
    Hydroxychloroquine sulfate/Official Monographs. USP40-NF35. Rockville: United States Pharmacopeial Convention, Inc.; 2017. p. 4534.Google Scholar
  23. 23.
    Barboza F, Vecchia DD, Tagliari MP, Silva MAS, Stulzer HK. Differential scanning calorimetry as a screening technique in compatibility studies of acyclovir extended release formulations. Pharm Chem J. 2009;43:363–8.CrossRefGoogle Scholar
  24. 24.
    Hegde DA, Hegde DD, Nagarsenker MS, Tipnis HP. Application of differential scanning calorimetry (DSC) to preformulation compatibility studies between chloroquine phosphate and tablet excipients. Indian J Pharm Sci. 1996;58:71–6.Google Scholar
  25. 25.
    Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.CrossRefGoogle Scholar
  26. 26.
    Júlio TA, Zâmara IF, Garcia JS, Trevisan MG. Compatibility of sildenafil citrate and pharmaceutical excipients by thermal analysis and LC–UV. J Therm Anal Calorim. 2013;111:2037–44.CrossRefGoogle Scholar
  27. 27.
    Ledeti I, Budiul M, Matusz P, Vlase G, Circioban D, Dehelean C, Suta L-M, Caunii A, Ledeti A, Vlase T, Murariu M, Bolintineanu S. Preformulation studies for nortriptyline: solid-state compatibility with pharmaceutical excipients. J Therm Anal Calorim. 2018;131:191–9.CrossRefGoogle Scholar
  28. 28.
    Peres-Filho MJ, Gaeti MPN, de Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2011;104:255–60.CrossRefGoogle Scholar
  29. 29.
    Tita B, Fulias A, Bandur G, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56:221–7.CrossRefGoogle Scholar
  30. 30.
    de Oliveira GGG, Feitosa A, Loureiro K, Fernandes AR, Souto EB, Severino P. Compatibility study of paracetamol, chlorpheniramine maleate and phenylephrine hydrochloride in physical mixtures. Saudi Pharm J. 2017;25:99–103.CrossRefGoogle Scholar
  31. 31.
    Il’ves VG, Zuev MG, Sokovnin SY. Properties of silicon dioxide amorphous nanopowder produced by pulsed electron beam evaporation. J Nanotechnol. 2015;18:1–8.CrossRefGoogle Scholar
  32. 32.
    Stulzer HK, Tagliari MP, Cruz AP, Silva MAS, Laranjeira MCM. Compatibility studies between piroxicam and pharmaceutical excipients used in solid dosage forms. Pharm Chem J. 2008;42:215–9.CrossRefGoogle Scholar
  33. 33.
    Liltorp K, Larsen TG, Willumsen B, Holm R. Solid state compatibility studies with tablet excipients using non thermal methods. J Pharm Biomed Anal. 2011;55:424–8.CrossRefGoogle Scholar
  34. 34.
    Mubtasim N, Kabir ER, Podder AK, Bhadra S. A pragmatic approach to the analysis of a combination formulation. Saudi Pharm J. 2016;24:689–97.CrossRefGoogle Scholar
  35. 35.
    Daniel JSP, Veronez IP, Rodrigues LL, Trevisan MG, Garcia JS. Risperidone—solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques. Thermochim Acta. 2013;568:148–55.CrossRefGoogle Scholar
  36. 36.
    Pereira RN, Valente BR, Cruz AP, Foppa T, Murakami FS, Silva MAS. Thermoanalytical study of atenolol and commercial tablets. Lat Am J Pharm. 2007;26:382–6.Google Scholar
  37. 37.
    Rus LM, Tomuta I, Iuga C, Maier C, Kacso I, Borodi G, Bratu I, Bojita M. Compatibility studies of indapamide/pharmaceutical excipients used in tablet preformulation. Farmacia. 2012;60:92–101.Google Scholar
  38. 38.
    Gao R, Jin Y, Yang Q-Y, Sun B-W, Lin J. Study of stability and drug-excipient compatibility of estradiol and pharmaceutical excipients. J Therm Anal Calorim. 2015;120:839–45.CrossRefGoogle Scholar
  39. 39.
    Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants. 2014;2:21–43.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Amanda Naves Ferreira Moraes
    • 1
    • 2
  • Luís Antônio Dantas Silva
    • 1
  • Maysa Aparecida de Oliveira
    • 2
  • Eder Magno de Oliveira
    • 2
  • Thais Leite Nascimento
    • 1
  • Eliana Martins Lima
    • 1
  • Ieda Maria Sapateiro Torres
    • 1
  • Danielle Guimarães Almeida Diniz
    • 1
    Email author
  1. 1.Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos- FarmaTec, Faculdade de FarmáciaUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Laboratório Central de Saúde Pública- LACENGoiâniaBrazil

Personalised recommendations