Polymeric composites of 1,2,4-thiadiazole: solubility, dissolution and permeability assay

  • Tatyana V. VolkovaEmail author
  • Ekaterina N. Domanina
  • Mikhail V. Chislov
  • Alexey N. Proshin
  • Irina V. Terekhova


The derivative of 1,2,4-thiadiazole (TDZ) can be considered as a perspective agent for the Alzheimer’s disease prevention. Due to a highly lipophilic character, the compound reveals good membrane permeability properties and poor solubility in aqueous media. In order to solve this problem, water-soluble biodegradable polymers: PEG 6000 (PEG), PVP K29-30 (PVP) and linear (A–B–A type) ethylene oxide-propylene oxide block copolymer Pluronic F127 (F127) were used in the present investigation to obtain binary and ternary TDZ composites (solid dispersions) with improved solubility and dissolution rate. Composites were prepared by a mechanical grinding procedure. Differential scanning calorimetry and FTIR spectroscopy were used to characterize the obtained samples. The interaction of TDZ with PVP after the grinding procedure was revealed. Shake-flask method was applied to measure the solubility of the composites. A dramatical increase in the solubility was shown for the solid dispersion with F127 above the critical micelle concentration. The dissolution behavior was studied with the help of the basket method at pH 1.2 and pH 6.8. The dissolution of TDZ/polymer solid dispersions was substantially accelerated as compared to pure TDZ and physical mixtures. The dissolution mechanism was estimated through the Korsmeyer–Peppas model equation. Franz diffusion cell and new Permeapad™ barrier were applied for the permeability assay. The permeability of TDZ in solid dispersions through the Permeapad™ barrier was shown to decrease in comparison with the pure TDZ. It was concluded that composites with PEG, PVP and F127 are an effective tool for increasing the solubility and dissolution of 1,2,4-thiadiazole derivative.


1,2,4-thiadiazole Polymers Solubility Dissolution Permeability 



This investigation was performed within the State Program of Fundamental Scientific Research (No. 0092-2014-0005). The authors thank Prof. Annette Bauer-Brandl (Dept. of Physics Chemistry and Pharmacy, University of Southern Denmark) and Labtastic distributor ( for donation of the Permeapad™ barrier. Authors thank the “The Upper Volga Region Centre of Physicochemical Research (Ivanovo, Russia) and St. Petersburg State University Center “Thermogravimetric and Calorimetric Research” for the provision of scientific equipment (DSC).

Supplementary material

10973_2019_8947_MOESM1_ESM.doc (43 kb)
Supplementary material 1 (DOC 43 kb)


  1. 1.
    Shekhawat P, Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B. 2017;7(3):260–80.CrossRefGoogle Scholar
  2. 2.
    Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm. 2006;3:631–43.CrossRefGoogle Scholar
  3. 3.
    Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Basavaraj S, Betageri GV. Can formulation and drug delivery reduce attrition during drug discovery and development—review of feasibility, benefits and challenges. Acta Pharm Sin B. 2014;4(1):3–17.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.CrossRefGoogle Scholar
  6. 6.
    Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418–30.CrossRefGoogle Scholar
  7. 7.
    Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3):799–813.CrossRefGoogle Scholar
  8. 8.
    Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25.CrossRefGoogle Scholar
  9. 9.
    Bruni G, Sakaj M, Berbenni V, Maggi L, Friuli V, Girella A, Chiara Milanese Marini A. Physico-chemical and pharmaceutical characterization of sulindac–proglumide binary system. J Therm Anal Calorim. 2019;136:2063–70.CrossRefGoogle Scholar
  10. 10.
    Elder DP, Holm R, De Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm. 2013;453(1):88–100.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trandafirescu C, Ledeţi I, Şoica C, Ledeţi A, Vlase G, Borcan F, Dehelean C, Coricovac D, Racoviceanu R, Aigner Z. Albendazole-cyclodextrins binary systems. J Therm Anal Calorim. 2019. Scholar
  12. 12.
    Semalty A. Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: a critical and meta-analysis. Exp Opin Drug Deliv. 2014;11(8):1255–72.CrossRefGoogle Scholar
  13. 13.
    Vieira ACC, Ferreira Fontes DA, Chaves LL, Alves LDS, de Freitas Neto JL, de La Roca Soares MF, Rolim-Neto PJ. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohyd Polym. 2015;130:133–40.CrossRefGoogle Scholar
  14. 14.
    Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27–50.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pires FQ, Pinho LA, Freire DO, Silva ICR, Sa-Barreto LL, Cardozo-Filho L, Gratieri T, Gelfuso GM, Cunha-Filho M. Thermal analysis used to guide the production of thymol and Lippia origanoides essential oil inclusion complexes with cyclodextrin. J Therm Anal Calorim. 2019;137(2):543–53.CrossRefGoogle Scholar
  16. 16.
    Pandya P, Gattani S, Jain P, Khirwal L, Kljgh SS. Co-solvent evaporation method for enhancement of solubility and dissolution rate of poorly aqueous soluble drug simvastatin: in vitro–in vivo evaluation. AAPS PharmSciTech. 2008;9(4):1247–52.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gharee MM, Abdulrasool AA, Hussein AA, Noordin MI. Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS PharmSciTech. 2009;10(4):1206–15.CrossRefGoogle Scholar
  18. 18.
    Majerik V, Horváth G, Szokonya L, Charbit G, Badens E, Bosc N, Teillaud E. Supercritical antisolvent versus coevaporation: preparation and characterization of solid dispersions. Drug Dev Ind Pharm. 2007;33(9):975–83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yang C, Xu X, Wang J, An Z. Use of the co-grinding method to enhance the dissolution behavior of a poorly water-soluble drug: generation of solvent-free drug-polymer solid dispersions. Chem Pharm Bull (Tokyo). 2012;60(7):837–45.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kanaze FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: a comparative study. J Appl Polym Sci. 2006;102:460–71.CrossRefGoogle Scholar
  21. 21.
    Patel RP, Patel DJ, Bhimani DB, Patel JK. Physicochemical characterization and dissolution study of solid dispersions of furosemide with polyethylene glycol 6000 and Polyvinylpyrrolidone K30. Diss Tech. 2008;17–25.Google Scholar
  22. 22.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bailey Jr, Frederick E, Koleske JV. Alkylene oxides and their polymers. 1990; New York: Dekker. pp. 27–28. ISBN 9780824783846. Retrieved 17 July 2017.Google Scholar
  24. 24.
    Cavallaro G, Grillo I, Gradzielski M, Lazzara G. Structure of hybrid materials based on halloysite nanotubes filled with anionic surfactants. J Phys Chem C. 2016;120(25):13492–502.CrossRefGoogle Scholar
  25. 25.
    Dintcheva N, Catalano G, Arrigo R, Morici E, Cavallaro G, Lazzara G, Bruno M. Pluronic nanoparticles as anti-oxidant carriers for polymers. Polym Degrad Stab. 2016;134:194–201.CrossRefGoogle Scholar
  26. 26.
    Karolewicz B, Gajda M, Górniak A, Owczarek A, Mucha I. Pluronic F127 as a suitable carrier for preparing the imatinib base solid dispersions and its potential in development of a modified release dosage forms. J Therm Anal Calorim. 2017;130:383–90.CrossRefGoogle Scholar
  27. 27.
    Chakraborti CK, Sahoo S, Behera PK. Role of different biodegradable polymers on the permeability of ciprofloxacin. J Adv Pharm Technol Res. 2014;5(3):140–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, Amidon GL, Dahan A. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm. 2011;8:1848–56.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Beig A, Miller JM, Dahan A. Accounting for the solubility–permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption. Eur J Pharm Biopharm. 2012;81:386–91.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Miller JM, Beig A, Carr RA, Webster GK, Dahan A. The solubility—permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm. 2012;9:581–90.CrossRefGoogle Scholar
  31. 31.
    Siddiquia N, Ahuja P, Ahsan W, Pandey SN, Alam MS. Thiadiazoles: progress report on biological activities. J Chem Pharm Res. 2009;1(1):19–30.Google Scholar
  32. 32.
    MacLeod AM, Baker R, Freedman SB, Patel S, Merchant KJ, Roe M, Saunders J. Synthesis and muscarinic Activities of 1,2,4-Thiadiazoles. J Med Chem. 1990;33:2052–9.CrossRefGoogle Scholar
  33. 33.
    Martinez A, Alonso M, Castro A, Perez C, Moreno FJ. First Non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J Med Chem. 2002;45:1292–9.CrossRefGoogle Scholar
  34. 34.
    Juszczak M, Walczak K, Langner E, Karpinska M, Matysiak J, Rzeski W. Neuroprotective activity of 2-amino-1,3,4-thiadiazole derivative 4BrABT—an in vitro study. Ann Agr Env Med. 2013;20:575–9.Google Scholar
  35. 35.
    Castano T, Encinas A, Peґrez C, Castro A, Campillo NE, Gil C. Design, synthesis, and evaluation of potential inhibitors of nitric oxide synthase. Bioorg Med Chem. 2008;16:6193–206.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Volkova TV, Terekhova IV, Silyukov OI, Proshin AN, Bauer-Brandl A, Perlovich GL. Towards the rational design of novel drugs based on solubility, partitioning/distribution, biomimetic permeability and biological activity exemplified by 1,2,4-thiadiazole derivatives. Med Chem Commun. 2017;8:162–75.CrossRefGoogle Scholar
  37. 37.
    di Cagno M, Bibi HA, Bauer-Brandl A. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. Eur J Pharm Sci. 2015;73:29–34.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lin HL, Lin S-Y, Lin C-C, Hsu C-H, Wu T-K, Huang Y-T. Mechanical grinding effect on thermodynamics and inclusion efficiency of loratadine-cyclodextrin inclusion complex formation. Carbohydr Polym. 2012;87:512–7.CrossRefGoogle Scholar
  39. 39.
    Rojas-Oviedo I, Retchkiman-Corona B, Quirino-Barreda CT, Cárdenas J, Schabes-Retchkiman PS. Solubility enhancement of a poorly water soluble drug by forming solid dispersions using mechanochemical activation. Indian J Pharm Sci. 2012;74(6):505–11.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem and Instr. 1965;4:117–212.Google Scholar
  41. 41.
    Bibi HA, di Cagno M, Holm R, Bauer-Brandl A. Permeapad™ for investigation of passive drug permeability: the effect of surfactants, co-solvents and simulated intestinal fluids (FaSSIF and FeSSIF). Int J Pharm. 2015;493:192–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Munson EJ. Analytical Techniques in Solid-state Characterization. In: Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR, editors. Developing Solid Oral Dosage Forms. Pharmaceutical Theory and Practice. Edinburgh: Academic Press; 2009. p. 61–74.CrossRefGoogle Scholar
  43. 43.
    Jayaramudu T, Raghavendra GM, Varaprasad K, Reddy GVS, Reddy AB, Sudhakar K, Sadiku ER. Preparation and characterization of poly(ethyleneglycol) stabilized nanosilver particles by a mechanochemical assisted ball mill process. J Appl Polym Sci. 2016;133:43027–35.CrossRefGoogle Scholar
  44. 44.
    Arias MJ, Moyano JR, Ginés JM. Study by DSC and HSM of the oxazepam-PEG 6000 and oxazepam-d-mannitol systems: application to the preparation of solid dispersions. Thermochim Acta. 1998;321:33–41.CrossRefGoogle Scholar
  45. 45.
    Wang X, Michoel A, Van den Mooter G. Study of the phase behavior of polyethylene glycol 6000–itraconazole solid dispersions using DSC. Int J Pharm. 2004;272:181–7.CrossRefGoogle Scholar
  46. 46.
    Verheyen S, Augustijns P, Kinget R, Van den Mooter G. Melting behavior of pure polyethyleneglycol 6000 and polyethyleneglycol 6000 in solid dispersions containing diazepam or temazepam: a DSC study. Thermochim Acta. 2001;380:153–64.CrossRefGoogle Scholar
  47. 47.
    Karolewicz B, Gajda M, Pluta J, Gorniak A. Dissolution study and thermal analysis of fenofibrate–Pluronic F127 solid dispersions. J Therm Anal Calorim. 2015;125(2):751–7.CrossRefGoogle Scholar
  48. 48.
    Karolewicz B, Gorniak A, Owczarek A, Zurawska-Płaksej E, Piwowar A, Pluta J. Thermal, spectroscopic, and dissolution studies of ketoconazole–Pluronic F127 system. J Therm Anal Calorim. 2014;115(3):2487–93.CrossRefGoogle Scholar
  49. 49.
    Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, Higaki K, Kimura T. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267:79–91.CrossRefGoogle Scholar
  50. 50.
    Ginés JM, Arias MJ, Rabasco AM, Sánchez-Soto PJ. Thermal study of the system polyethyleneglycol 6000-triamterene. J Therm Anal. 1993;40:453–62.CrossRefGoogle Scholar
  51. 51.
    Sezgin Z, Yuksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64:261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethy1ene oxide)-poly(propy1ene oxide)-poly(ethy1ene oxide) triblock copolymers in aqueous aolutions: thermodynamics of copolymer association. Macromolecules. 1994;27:2414–25.CrossRefGoogle Scholar
  53. 53.
    Croy SR, Kwon GS. The effects of Pluronic block copolymers on the aggregation state of nystatin. J Control Release. 2004;95:161–71.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cirri M, Mura P, Rabasco AM, Gines JM, Moyano JR, Gonzalez-Rodrıguez ML. Characterization of ibuproxam binary and ternary dispersions with hydrophilic carriers. Drug Dev and Ind Pharm. 2004;30:65–74.CrossRefGoogle Scholar
  55. 55.
    Chadha R, Kapoor KV, Kumar A. Analytical techniques used to characterize drug-polyvinylpyrrolidone systems in solid and liquid states—An overview. JSIR. 2006;65:459–69.Google Scholar
  56. 56.
    Zhang H, Yu L. Dissolution Testing for Solid Oral Drug Products: theoretical Considerations. Am Pharm Rev. 2004;7:26–31.Google Scholar
  57. 57.
    Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27(1):48–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Reflection paper on the dissolution specification for generic oral immediate release products. European Medicines Agency, 2016.Google Scholar
  59. 59.
    Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Singhvi G, Singh M. Review: in vitro drug release characterization models. IJPSR. 2011;II(I):77–84.Google Scholar
  61. 61.
    Brusnikina M, Silyukov O, Chislov M, Volkova T, Proshin A, Terekhova I. New water-soluble dosage forms of 1,2,4-thiadiazole derivative on the basis of inclusion complexes with cyclodextrins. J Therm Anal Calorim. 2017;127:1815–24.CrossRefGoogle Scholar
  62. 62.
    Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Sinclair GW, Peppas NA. Analysis of non-Fickian transport in polymers using a simplified exponential expression. J Membr Sci. 1984;17:329–31.CrossRefGoogle Scholar
  64. 64.
    Hezaveh S, Samanta S, De Nicola A, Milano G, Roccatano D. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations. J Phys Chem B. 2012;116(49):14333–45.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nawaz S, Redhead M, Mantovani G, Alexander C, Bosquillon C, Carbone P. Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane dialysis with polymer structure. Soft Matter. 2012;8:6744–54.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.G.A. Krestov Institute of Solution Chemistry, Russian Academy of SciencesIvanovoRussian Federation
  2. 2.Ivanovo State University of Chemistry and TechnologyIvanovoRussian Federation
  3. 3.Saint Petersburg State UniversitySt. PetersburgRussian Federation
  4. 4.Institute of Physiologically Active Compounds, Russian Academy of SciencesChernogolovkaRussian Federation

Personalised recommendations