Energy and economic analysis of evaporative vacuum easy desalination system with brine tank

  • H. Kariman
  • S. HoseinzadehEmail author
  • A. Shirkhani
  • P. S. Heyns
  • J. Wannenburg


Nowadays, the freshwater is one of the most critical issues for humans. In this regard, desalination systems can be beneficial. In this research, at first different types of desalination systems and their governing equations is studied. Then the energy consumption of evaporative vacuum easy desalination system with brine tank is modeled. This modeling and the equations governing the energy consumption of new subsets such as the evaporator, condenser, vacuum pump, and other pumps are presented. In the end, the economic modeling of the system is investigated. The feasibility of using the system is reported in three cities (Abu Dhabi, Las Palmas, and Perth). The results shown that the annual operating cost of the pumps is estimated to be 0.19 M€ yr−1, 0.51 M€ yr−1 and 0.14 M€ yr−1 for Abu Dhabi and Las Palmas and Perth respectively. Also, the annual cost of fresh water production is compared with other reaches in these cities. The results are shown that Perth has the lowest cost of the fresh water output at 0.67 M€ yr−1 and Las Palmas has the highest cost of fresh water production with 0.104 M€ yr−1. The reason is the difference in the electricity prices in these cities.


Thermal energy analysis Desalination system Fresh water Vacuum pump Economic analysis 

List of symbols


Active surface of the heat transfer (m2)


Heat capacity of feed water (J kg−1 K−1)


Heat capacity of the water at constant pressure (J kg−1 K−1)


Heat capacity of saturated water (J kg−1 K−1)


Heat capacity of distillated water (J kg−1 K−1)


Cost of MED (€)


Cost of condenser (€)


Energy need to provide hot water (w)


Gravity (m/s2)


Average heat transfer coefficient (w M−2 k−1)


Enthalpy of brine (J kg−1)


Enthalpy of tank water (J kg−1)


Enthalpy of feed water (J kg−1)


Heat of evaporation (J kg−1)


Heat capacity of the water condensation (J kg−1)


Corrected value of the special water heat capacity (J kg−1)


Jacobin coefficient


Temperature conductivity in saturated liquid state (W m−1 K−1)


Length (m)


Brine flow rate (L h−1)


Cooling water flow rate (L h−1)


Feed water flow rate (L h−1)


Heating water flow rate (L h−1)


Mass of salt (g)


Tank flow (L)


Annual operative cost of labor


Annual operative cost of heating fluid (€ yr−1)


Total annual cost (€ yr−1)


Heat exchanged (J s−1)


Salinity (g L−1)


Temperature of ambient (°C)


Temperature of heating water (°C)


Temperature of brine (°C)


Temperature of feed water (°C)


Temperature of surface (°C)


Temperature of saturation (°C)

Greek letters

\(\rho l\)

Density at saturated liquid (kg m−3)

\(\rho v\)

Density at saturated vapor (kg m−3)

\(\mu l\)

Dynamic viscosity at saturated liquid (Pa s)

\(\Delta {\text{TLMTD}}\)

Logarithmic temperature difference (°C)



  1. 1.
    El-Dessouky H, Alatiqi I, Bingulac S, Ettouney H. Steady-state analysis of the multiple effect evaporation desalination process. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol. 1998;21(5):437–51.Google Scholar
  2. 2.
    Ali MB, Kairouani L. Multi-objective optimization of operating parameters of a MSF-BR desalination plant using solver optimization tool of Matlab software. Desalination. 2016;381:71–83.CrossRefGoogle Scholar
  3. 3.
    Malik SN, Bahri PA, Vu LT. Steady state optimization of design and operation of desalination systems using Aspen Custom Modeler. Comput Chem Eng. 2016;91:247–56.CrossRefGoogle Scholar
  4. 4.
    Bandi CS, Uppaluri R, Kumar A. Global optimization of MSF seawater desalination processes. Desalination. 2016;394:30–43.CrossRefGoogle Scholar
  5. 5.
    Rautenbach R. Progress in distillation. Desalination. 1993;93(1–3):1–13.CrossRefGoogle Scholar
  6. 6.
    Morin OJ. Design and operating comparison of MSF and MED systems. Desalination. 1993;93(1–3):69–109.CrossRefGoogle Scholar
  7. 7.
    Mousapour A, Hajipour A, Rashidi MM, Freidoonimehr N. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction. Energy. 2016;94:100–9.CrossRefGoogle Scholar
  8. 8.
    Rashidi MM, Parsa AB, Shamekhi L, Nazari F, Ali M. Exergetic optimisation of a multi-stage compression transcritical refrigeration cycle. Int J Exergy. 2016;20(1):22–47.CrossRefGoogle Scholar
  9. 9.
    Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.CrossRefGoogle Scholar
  10. 10.
    Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.CrossRefGoogle Scholar
  11. 11.
    Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.CrossRefGoogle Scholar
  12. 12.
    Sheikholeslami M, Shamlooei M. Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrog Energy. 2017;42(9):5708–18.CrossRefGoogle Scholar
  13. 13.
    Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.CrossRefGoogle Scholar
  14. 14.
    Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.CrossRefGoogle Scholar
  15. 15.
    Sheikholeslami M. Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.CrossRefGoogle Scholar
  16. 16.
    Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.CrossRefGoogle Scholar
  17. 17.
    Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput. 2017;298:272–82.Google Scholar
  18. 18.
    Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.CrossRefGoogle Scholar
  19. 19.
    Sheikholeslami M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.CrossRefGoogle Scholar
  20. 20.
    Sheikholeslami M, Rokni HB. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.CrossRefGoogle Scholar
  21. 21.
    Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019;138(1):573–81. Scholar
  22. 22.
    Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019;138(1):795–804. Scholar
  23. 23.
    Javadi MA, Hoseinzadeh S, Khalaji M, Ghasemiasl R. Optimization and analysis of exergy, economic, and environmental of a combined cycle power plant. Sādhanā. 2019;44(5):121.CrossRefGoogle Scholar
  24. 24.
    Javadi MA, Hoseinzadeh S, Ghasemiasl R, Heyns PS, Chamkha AJ. Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant. J Therm Anal Calorim. 2019; 1–7.Google Scholar
  25. 25.
    Hoseinzadeh S, Heyns PS, Chamkha AJ, Shirkhani A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J Therm Anal Calorim. 2019;138(1):727–35. Scholar
  26. 26.
    Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical validation heat transfer of rectangular cross-section porous fins. J Thermophys Heat Transf. 2019;33:698–704.CrossRefGoogle Scholar
  27. 27.
    Hoseinzadeh S, Sahebi SAR, Ghasemiasl R, Majidian AR. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water). Eur Phys J Plus. 2017;132(5):197.CrossRefGoogle Scholar
  28. 28.
    Hoseinzadeh S. Thermal performance of electrochromic smart window with nanocomposite structure under different climates in Iran. Micro Nanosyst. 2019;11(2):154–64.CrossRefGoogle Scholar
  29. 29.
    Hoseinzadeh S, Hadi Zakeri M, Shirkhani A, Chamkha AJ. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. J Renew Sustain Energy. 2019;11(1):015103.CrossRefGoogle Scholar
  30. 30.
    Hoseinzadeh S, Azadi R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J Renew Sustain Energy. 2017;9(4):045101.CrossRefGoogle Scholar
  31. 31.
    Yousef Nezhad ME, Hoseinzadeh S. Mathematical modelling and simulation of a solar water heater for an aviculture unit using MATLAB/SIMULINK. J Renew Sustain Energy. 2017;9(6):063702.CrossRefGoogle Scholar
  32. 32.
    Yari A, Hosseinzadeh S, Golneshan AA, Ghasemiasl R. Numerical simulation for thermal design of a gas water heater with turbulent combined convection. In: ASME/JSME/KSME 2015 joint fluids engineering conference. American Society of Mechanical Engineers Digital Collection; 2015.Google Scholar
  33. 33.
    Gonda A, Lancereau P, Bandelier P, Luo L, Fan Y, Benezech S. Water falling film evaporation on a corrugated plate. Int J Therm Sci. 2014;81:29–37.CrossRefGoogle Scholar
  34. 34.
    Elsafi AM. Integration of humidification-dehumidification desalination and concentrated photovoltaic-thermal collectors: energy and exergy-costing analysis. Desalination. 2017;424:17–26.CrossRefGoogle Scholar
  35. 35.
    Olatayo KI, Wichers JH, Stoker PW. Energy and economic performance of small wind energy systems under different climatic conditions of South Africa. Renew Sustain Energy Rev. 2018;98:376–92.CrossRefGoogle Scholar
  36. 36.
    Gu W, Wang X, Wang L, Yin X, Liu H. Performance investigation of an auto-tuning area ratio ejector for MED-TVC desalination system. Appl Therm Eng. 2019;155:470–9.CrossRefGoogle Scholar
  37. 37.
    Serrano-Tovar T, Suárez BP, Musicki A, Juan A, Cabello V, Giampietro M. Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation. Sci Total Environ. 2019;689:945–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Hu W, Liu Z, Tan J. Thermodynamic analysis of wind energy systems. In: Wind solar hybrid renewable energy system. IntechOpen; 2019.Google Scholar
  39. 39.
    Rosales-Asensio E, Borge-Diez D, Pérez-Hoyos A, Colmenar-Santos A. Reduction of water cost for an existing wind-energy-based desalination scheme: a preliminary configuration. Energy. 2019;167:548–60.CrossRefGoogle Scholar
  40. 40.
    Mito MT, Ma X, Albuflasa H, Davies PA. Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: state of the art and challenges for large-scale implementation. Renew Sustain Energy Rev. 2019;112:669–85.CrossRefGoogle Scholar
  41. 41.
    Agha KR. The thermal characteristics and economic analysis of a solar pond coupled low temperature multi stage desalination plant. Sol Energy. 2009;83(4):501–10.CrossRefGoogle Scholar
  42. 42.
    El-Dessouky HT, Ettouney HM. Fundamentals of salt water desalination. Amsterdam: Elsevier; 2002.Google Scholar
  43. 43.
    Kaldellis JK, Kavadias KA, Kondili E. Renewable energy desalination plants for the Greek islands—technical and economic considerations. Desalination. 2004;170(2):187–203.CrossRefGoogle Scholar
  44. 44.
    Kavvadias KC, Khamis I. The IAEA DEEP desalination economic model: a critical review. Desalination. 2010;257(1–3):150–7.CrossRefGoogle Scholar
  45. 45.
    Nisan S, Dardour S. Economic evaluation of nuclear desalination systems. Desalination. 2007;205(1–3):231–42.CrossRefGoogle Scholar
  46. 46.
    Ejli D, Benchrifa R, Bennouna A, Zazi K. Economic analysis of wind-powered desalination in the south of Morocco. Desalination. 2004;165:219–30.CrossRefGoogle Scholar
  47. 47.
    Choi S, Kim B, Nayar KG, Yoon J, Al-Hammadi S, Han J, Al-Anzi B. Techno-economic analysis of ion concentration polarization desalination for high salinity desalination applications. Water Res. 2019;155:162–74.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zou Q, Liu X. Economic effects analysis of seawater desalination in China with input–output technology. Desalination. 2016;380:18–28.CrossRefGoogle Scholar
  49. 49.
    Filippini G, Al-Obaidi MA, Manenti F, Mujtaba IM. Design and economic evaluation of solar-powered hybrid multi effect and reverse osmosis system for seawater desalination. Desalination. 2019;465:114–25.CrossRefGoogle Scholar
  50. 50.
    Boxman RL, Sanders DM, Martin PJ, editors. Handbook of vacuum arc science and technology: fundamentals and applications. Norwich: William Andrew; 1996.Google Scholar
  51. 51.
    Lewin G, Russell AM. Fundamentals of vacuum science and technology. Am J Phys. 1965;33:977.CrossRefGoogle Scholar
  52. 52.
    Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 2011.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • H. Kariman
    • 1
  • S. Hoseinzadeh
    • 2
    • 3
    Email author
  • A. Shirkhani
    • 3
  • P. S. Heyns
    • 2
  • J. Wannenburg
    • 2
  1. 1.Faculty of Mechanical and Energy EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Centre for Asset Integrity Management, Department of Mechanical and Aeronautical EngineeringUniversity of PretoriaPretoriaSouth Africa
  3. 3.Young Researchers and Elite Club, West Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations