Entropy generation in peristalsis with iron oxide

  • Bilal AhmedEmail author
  • T. Hayat
  • A. Alsaedi
  • F. M. Abbasi


Entropy generation in peristaltic transport of nanomaterial with iron oxide is discussed. MHD and Joule heating are analyzed. Energy equation further consists of heat source/sink and viscous dissipation. Velocity slip and temperature jump conditions are also accounted. Large wavelength analysis is carried out. Results for velocity, temperature, pressure and entropy generation are presented graphically. Temperature decreases by increasing nanomaterials’ volume fraction. Larger velocity slip parameter yields lower pressure gradient. Entropy generation is increased for Hartmann number and nanoparticle volume fraction.


Peristalsis Iron oxide Hartmann number Slip effects Entropy generation 



We are grateful to Higher Education Commission (HEC) of Pakistan for financial support of this work under the Project No. 20-3088/NRPU/R&D/HEC/13.


  1. 1.
    Dong S, Zheng L, Zhang X, Lin P. Improved drag force model and its application in simulating nanofluid flow. Microfluid Nanofluid. 2014;17:253–61.CrossRefGoogle Scholar
  2. 2.
    Chamkha AJ, Molana M, Rahnama A, Ghadami F. On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 2018;332:287–322.CrossRefGoogle Scholar
  3. 3.
    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div. 1995;231:99–105.Google Scholar
  4. 4.
    Buongiorno J. Convective transport in nanofluids. J. Heat Transf. 2006;128:240–50.CrossRefGoogle Scholar
  5. 5.
    Tiwari RJ, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50:2002–18.CrossRefGoogle Scholar
  6. 6.
    Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf. 2018;116:1314–25.CrossRefGoogle Scholar
  7. 7.
    Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford University Press; 1904. p. 435–41.Google Scholar
  8. 8.
    Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:187–91.CrossRefGoogle Scholar
  9. 9.
    Xue QZ. Model for thermal conductivity of carbon nanotube-based composites. Physica B Condens Matter. 2005;368:302–7.CrossRefGoogle Scholar
  10. 10.
    Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study. J Mol Liq. 2017;234:324–9.CrossRefGoogle Scholar
  11. 11.
    Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles in peristaltic flow of MHD nanofluids filled in an asymmetric channel: a novel mode for heat transfer enhancement. J Therm Anal Calorim. 2019. Scholar
  12. 12.
    Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2019;135:1733–41.CrossRefGoogle Scholar
  13. 13.
    Brickman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.CrossRefGoogle Scholar
  14. 14.
    Bhatti MM, Zeeshan A, Ellahi R, Bég OA, Kadir A. Effects of coagulation on the two phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chin J Phys. 2019;58:222–34.CrossRefGoogle Scholar
  15. 15.
    Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015;81:449–56.CrossRefGoogle Scholar
  16. 16.
    Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.CrossRefGoogle Scholar
  17. 17.
    Ul Haq R, Nadeem S, Khan ZH, Noor NFM. MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E Low-Dimens Syst Nanostruct. 2015;73:45–53.CrossRefGoogle Scholar
  18. 18.
    Hayat T, Muhammad K, Alsaedi A. Melting effect in MHD stagnation point flow of Jeffrey nanomaterial. Physica Scripta. 2019;94:115702. Scholar
  19. 19.
    Ellahi R, Zeeshan A, Hussain F, Asadollahi A. Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry. 2019;11:276.CrossRefGoogle Scholar
  20. 20.
    Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy–Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim. 2019;136:2087–95.CrossRefGoogle Scholar
  21. 21.
    Khan AA, Masood F, Ellahi R, Bhatti MM. Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects. J Mol Liq. 2018;258:186–95.CrossRefGoogle Scholar
  22. 22.
    Hayat T, Muhammad K, Alsaedi A, Asghar S. Numerical study for melting heat transfer and homogeneous–heterogeneous reactions in flow involving carbon nanotubes. Results Phys. 2018;8:415–21.CrossRefGoogle Scholar
  23. 23.
    Hayat T, Aziz A, Muhammad T, Alsaedi A. Significance of homogeneous–heterogeneous reactions in Darcy–Forchheimer three-dimensional rotating flow of carbon nanotubes. J Therm Anal Calorim. 2019.
  24. 24.
    Hayat T, Abbasi FM, Ahmed B. Peristaltic transport of copper–water nanofluid saturating porous medium. Physica E. 2015;67:47–53.CrossRefGoogle Scholar
  25. 25.
    Liu S, Zhang Q, Yin C, Chen W, Chan Q, He J, Zhu B. An optimised repetition time (TR) for cine imaging of uterine peristalsis on 3 T MRI. Clin Radiol. 2018;73:7–12.Google Scholar
  26. 26.
    Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Flow of carbon nanotubes submerged in water through a channel with wavy walls with convective boundary conditions. Colloid Polym Sci. 2017;295:1905–14.CrossRefGoogle Scholar
  27. 27.
    Ali N, Sajid M, Javed T, Abbas Z. Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf. 2017;53:3319–25.CrossRefGoogle Scholar
  28. 28.
    Hayat T, Ahmed B, Abbasi FM, Ahmad B. Mixed convective peristaltic flow of carbon nanotubes submerged in water using different thermal conductivity models. Comput Methods Programs Biomed. 2016;135:141–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Hayat T, Ahmed B, Alsaedi A, Abbasi FM. Numerical study for peristalsis of Carreau–Yasuda nanomaterial with convective and zero mass flux condition. Results Phys. 2018;8:1168–77.CrossRefGoogle Scholar
  30. 30.
    Abbasi FM, Hayat T, Ahmad B. Peristalsis of silver–water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J Mol Liq. 2015;207:248–55.CrossRefGoogle Scholar
  31. 31.
    Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.CrossRefGoogle Scholar
  32. 32.
    Liang YY, Weihs GAF, Fletcher DF. CFD study of the effect of unsteady slip velocity waveform on shear stress in membrane systems. Chem Eng Sci. 2018;192:16–24.CrossRefGoogle Scholar
  33. 33.
    Abbas N, Saleem S, Nadeem S, Alderremy AA, Khan AU. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results Phys. 2018;9:1224–32.CrossRefGoogle Scholar
  34. 34.
    Bejan A. Entropy generation minimization. Boca Raton: CRC Press; 1996.Google Scholar
  35. 35.
    Manay E, Akyürek EF, Sahin B. Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys. 2018;9:615–24.CrossRefGoogle Scholar
  36. 36.
    Khan MWA, Khan MI, Hayat T, Alsaedi A. Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation. Physica B Condens Matter. 2018;534:113–9.CrossRefGoogle Scholar
  37. 37.
    Akbar NS, Butt AW. Entropy generation analysis for the peristaltic flow of Cu–water nanofluid in a tube with viscous dissipation. J Hydrodyn. 2017;29:135–43.CrossRefGoogle Scholar
  38. 38.
    Abbasi FM, Shanakhat I, Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater. 2019;474:434–41.CrossRefGoogle Scholar
  39. 39.
    Zeeshan A, Shehzad N, Abbas T, Ellahi R. Effects of radiative electro-magnetohydrodynamics diminishing internal energy of pressure-driven flow of titanium dioxide–water nanofluid due to entropy generation. Entropy. 2019;236:1–25.Google Scholar
  40. 40.
    Ijaz Khan M, Qayyum S, Hayat T, Imran Khan M, Alsaedi A. Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating. Int J Heat Mass Transf. 2019;133:959–67.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Bilal Ahmed
    • 1
    Email author
  • T. Hayat
    • 1
    • 2
  • A. Alsaedi
    • 2
  • F. M. Abbasi
    • 3
  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of MathematicsCOMSATS University IslamabadIslamabadPakistan

Personalised recommendations