Advertisement

Synergistic effect of nano-silica and silica fume on hydration properties of cement-based materials

  • Yansheng Wang
  • Zhenhai Xu
  • Jinbang Wang
  • Zonghui ZhouEmail author
  • Peng Du
  • Xin Cheng
Article
  • 63 Downloads

Abstract

Synergistic effect of nano-silica and silica fume on hydration properties was studied in cement-based materials. In the present study, various tests were used to characterize hydration properties including hydration rate, non-evaporable water content, crystal phase analysis, pore size distribution, micrographs of hydration products and compressive strength. The results showed that nano-silica can significantly increase the non-evaporable water content and decrease calcium hydroxide (CH) content at 3 days, while the silica fume takes equal effect at 28 days. The addition of 0.8 mass% nano-silica and 12.5 mass% silica fume can increase the total hydration heat of cement paste by 48.49% compared with the control sample. Besides, the total porosity of hardened cement sample reduces by 6.14%, which finally results in the more compact matrix of hardened paste. In addition, the microstructure of hardened paste changes from porous to dense matrix at 3 days after nano-silica and silica fume modification. Silica fume concrete incorporated with 1.2 mass% nano-silica significantly increased the compressive strength for 3 days. Synergistic effect mechanism of nano-silica and silica fume on the filling effect enriches particle size distribution by combination of nanoscale fineness of nano-silica and micron scale fineness of silica fume. In the meantime, nano-silica can effectively remedy the insufficient activity of the silica fume in the early age.

Keywords

Nano-silica Silica fume Synergistic effect Hydration Microstructure 

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFB0309905), National High-tech R&D Program of China (2015AA034701), Shandong Province Science and Technology Major Project (new industry) (2015ZDXX0702B01), Shandong Province Science and Technology Development Plan (2014GSF117017) and National Natural Science Foundation of China (No. 51702121).

References

  1. 1.
    Sanchez F, Sobolev K. Nanotechnology in concrete: a review. Constr Build Mater. 2010;24(11):2060–71.Google Scholar
  2. 2.
    Sobolev K, Lin Z, Flores-Vivian I, Pradoto R. Nano-engineered cements with enhanced mechanical performance. J Am Ceram Soc. 2016;99(2):564–72.Google Scholar
  3. 3.
    Yeşilmen S, Al-Najjar Y, Balav MH, Şahmaran M, Yıldırım G, Lachemi M. Nano-modification to improve the ductility of cementitious composites. Cem Concr Res. 2015;76(Supplement C):170–9.  https://doi.org/10.1016/j.cemconres.2015.05.026.Google Scholar
  4. 4.
    Liu M, Zhou Z, Zhang X, Yang X, Cheng X. The synergistic effect of nano-silica with blast furnace slag in cement based materials. Constr Build Mater. 2016;126:624–31.  https://doi.org/10.1016/j.conbuildmat.2016.09.078.Google Scholar
  5. 5.
    Xu Z, Zhou Z, Du P, Cheng X. Effects of nano-limestone on hydration properties of tricalcium silicate. J Therm Anal Calorim. 2016;125:1–9.Google Scholar
  6. 6.
    Ghahari SA, Ghafari E, Lu N. Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting. Constr Build Mater. 2017;146:755–63.Google Scholar
  7. 7.
    Allahverdi A, Yousefi A, Hejazi P. Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr Build Mater. 2013;41(2):224–30.Google Scholar
  8. 8.
    Li Z, Wang H, He S, Lu Y, Wang M. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett. 2006;60(3):356–9.Google Scholar
  9. 9.
    Heikal M. Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles. J Therm Anal Calorim. 2016;126(3):1–11.Google Scholar
  10. 10.
    Rashad AM, Ouda AS. Thermal resistance of alkali-activated metakaolin pastes containing nano-silica particles. J Therm Anal Calorim. 2019;136(2):609–20.  https://doi.org/10.1007/s10973-018-7657-1.Google Scholar
  11. 11.
    Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater. 2007;21(3):539–45.  https://doi.org/10.1016/j.conbuildmat.2005.09.001.Google Scholar
  12. 12.
    Du H, Du S, Liu X. Durability performances of concrete with nano-silica. Constr Build Mater. 2014;73(Supplement C):705–12.  https://doi.org/10.1016/j.conbuildmat.2014.10.014.Google Scholar
  13. 13.
    Land G, Stephan D. The influence of nano-silica on the hydration of ordinary Portland cement. J Mater Sci. 2012;47(2):1011–7.  https://doi.org/10.1007/s10853-011-5881-1.Google Scholar
  14. 14.
    Xu Z, Zhou Z, Du P, Cheng X. Effects of nano-silica on hydration properties of tricalcium silicate. Constr Build Mater. 2016;125:1169–77.  https://doi.org/10.1016/j.conbuildmat.2016.09.003.Google Scholar
  15. 15.
    Farzadnia N, Noorvand H, Yasin AM, Aziz FNA. The effect of nano silica on short term drying shrinkage of POFA cement mortars. Constr Build Mater. 2015;95(Supplement C):636–46.  https://doi.org/10.1016/j.conbuildmat.2015.07.132.Google Scholar
  16. 16.
    Singh LP, Bhattacharyya SK, Shah SP, Mishra G, Ahalawat S, Sharma U. Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part I. Constr Build Mater. 2015;74:278–86.Google Scholar
  17. 17.
    Pârvan M-G, Voicu G, Bădănoiu A-I. Study of hydration and hardening processes of self-sensing cement-based materials with carbon black content. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08535-8.Google Scholar
  18. 18.
    Zhang Z, Zhang B, Yan P. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete. Constr Build Mater. 2016;105:82–93.  https://doi.org/10.1016/j.conbuildmat.2015.12.045.Google Scholar
  19. 19.
    Yajun J, Cahyadi JH. Effects of densified silica fume on microstructure and compressive strength of blended cement pastes. Cem Concr Res. 2003;33(10):1543–8.  https://doi.org/10.1016/S0008-8846(03)00100-5.Google Scholar
  20. 20.
    Siddique R. Utilization of silica fume in concrete: review of hardened properties. Resour Conserv Recycl. 2011;55(11):923–32.  https://doi.org/10.1016/j.resconrec.2011.06.012.Google Scholar
  21. 21.
    Dybeł P, Furtak K. Influence of silica fume content on the quality of bond conditions in high-performance concrete specimens. Arch Civ Mech Eng. 2017;17(4):795–805.  https://doi.org/10.1016/j.acme.2017.02.007.Google Scholar
  22. 22.
    Rostami M, Behfarnia K. The effect of silica fume on durability of alkali activated slag concrete. Constr Build Mater. 2017;134(Supplement C):262–8.  https://doi.org/10.1016/j.conbuildmat.2016.12.072.Google Scholar
  23. 23.
    Singh NB, Kalra M, Kumar M, Rai S. Hydration of ternary cementitious system: Portland cement, fly ash and silica fume. J Therm Anal Calorim. 2014;119(1):1–9.Google Scholar
  24. 24.
    Mastali M, Dalvand A. Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Constr Build Mater. 2016;125(Supplement C):196–209.  https://doi.org/10.1016/j.conbuildmat.2016.08.046.Google Scholar
  25. 25.
    Fallah S, Nematzadeh M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr Build Mater. 2017;132(Supplement C):170–87.  https://doi.org/10.1016/j.conbuildmat.2016.11.100.Google Scholar
  26. 26.
    Ghoddousi P, Adelzade Saadabadi L. Study on hydration products by electrical resistivity for self-compacting concrete with silica fume and metakaolin. Constr Build Mater. 2017;154(Supplement C):219–28.  https://doi.org/10.1016/j.conbuildmat.2017.07.178.Google Scholar
  27. 27.
    Hanif A, Parthasarathy P, Ma H, Fan T, Li Z. Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cement Concr Compos. 2017;81(Supplement C):35–48.  https://doi.org/10.1016/j.cemconcomp.2017.04.008.Google Scholar
  28. 28.
    Janković K, Stanković S, Bojović D, Stojanović M, Antić L. The influence of nano-silica and barite aggregate on properties of ultra high performance concrete. Constr Build Mater. 2016;126(Supplement C):147–56.  https://doi.org/10.1016/j.conbuildmat.2016.09.026.Google Scholar
  29. 29.
    Ghafari E, Costa H, Júlio E, Portugal A, Durães L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater Des. 2014;59(6):1–9.Google Scholar
  30. 30.
    Cai Y, Hou P, Cheng X, Du P, Ye Z. The effects of nanoSiO2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Constr Build Mater. 2017;148(Supplement C):770–80.  https://doi.org/10.1016/j.conbuildmat.2017.05.091.Google Scholar
  31. 31.
    Zhang Z, Zhang B, Yan P. Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures. Constr Build Mater. 2016;121(Supplement C):483–90.  https://doi.org/10.1016/j.conbuildmat.2016.06.014.Google Scholar
  32. 32.
    El-Gamal SMA, Abo-El-Enein SA, El-Hosiny FI, Amin MS, Ramadan M. Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. J Therm Anal Calorim. 2018;131(2):949–68.  https://doi.org/10.1007/s10973-017-6629-1.Google Scholar
  33. 33.
    Wilińska I, Pacewska B, Ostrowski A. Investigation of different ways of activation of fly ash–cement mixtures. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08485-1.Google Scholar
  34. 34.
    Hou P, Qian J, Cheng X, Shah SP. Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cement Concr Compos. 2015;55:250–8.  https://doi.org/10.1016/j.cemconcomp.2014.09.014.Google Scholar
  35. 35.
    Malaiškienė J, Banevičienė V, Boris R, Antonovič V. The effect of dried paper-mill sludge on cement hydration. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08587-w.Google Scholar
  36. 36.
    Zhang Z, Zhang B, Yan P. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete. Constr Build Mater. 2016;105(Supplement C):82–93.  https://doi.org/10.1016/j.conbuildmat.2015.12.045.Google Scholar
  37. 37.
    Feng J, Liu S, Wang Z. Effects of ultrafine fly ash on the properties of high-strength concrete. J Therm Anal Calorim. 2015;121(3):1213–23.Google Scholar
  38. 38.
    Shaikh FUA, Supit SWM, Sarker PK. A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Mater Des. 2014;60(Supplement C):433–42.  https://doi.org/10.1016/j.matdes.2014.04.025.Google Scholar
  39. 39.
    El-Gamal SMA, Abo-El-Enein SA, El-Hosiny FI, Amin MS, Ramadan M. Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. J Therm Anal Calorim. 2017;2:1–20.Google Scholar
  40. 40.
    Chen Y, Zhang C, Song P, Wang Q, Huang C, Li S. Study on the hydration products of C3S prepared by sol–gel method. J Therm Anal Calorim. 2017;128(1):79–87.  https://doi.org/10.1007/s10973-016-5885-9 Google Scholar
  41. 41.
    Nili M, Ehsani A. Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater Des. 2015;75:174–83.  https://doi.org/10.1016/j.matdes.2015.03.024.Google Scholar
  42. 42.
    Ardalan RB, Jamshidi N, Arabameri H, Joshaghani A, Mehrinejad M, Sharafi P. Enhancing the permeability and abrasion resistance of concrete using colloidal nano-SiO2 oxide and spraying nanosilicon practices. Constr Build Mater. 2017;146:128–35.  https://doi.org/10.1016/j.conbuildmat.2017.04.078.Google Scholar
  43. 43.
    Norhasri MSM, Hamidah MS, Fadzil AM. Applications of using nano material in concrete: a review. Constr Build Mater. 2017;133(Supplement C):91–7.  https://doi.org/10.1016/j.conbuildmat.2016.12.005.Google Scholar
  44. 44.
    Pang B, Zhou Z, Xu H. Utilization of carbonated and granulated steel slag aggregate in concrete. Constr Build Mater. 2015;84(Supplement C):454–67.  https://doi.org/10.1016/j.conbuildmat.2015.03.008.Google Scholar
  45. 45.
    Ju Y, Tian K, Liu H, Reinhardt H-W, Wang L. Experimental investigation of the effect of silica fume on the thermal spalling of reactive powder concrete. Constr Build Mater. 2017;155:571–83.  https://doi.org/10.1016/j.conbuildmat.2017.08.086.Google Scholar
  46. 46.
    Rong Z, Sun W, Xiao H, Jiang G. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem Concr Compos. 2015;56(Supplement C):25–31.  https://doi.org/10.1016/j.cemconcomp.2014.11.001.Google Scholar
  47. 47.
    Zhang B, Tan H, Shen W, Xu G, Ma B, Ji X. Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cement Concr Compos. 2018;92:7–17.  https://doi.org/10.1016/j.cemconcomp.2018.05.012.Google Scholar
  48. 48.
    Supit SWM, Shaikh FUA. Durability properties of high volume fly ash concrete containing nano-silica. Mater Struct. 2015;48(8):2431–45.  https://doi.org/10.1617/s11527-014-0329-0.Google Scholar
  49. 49.
    Güneyisi E, Gesoglu M, Al-Goody A, İpek S. Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete. Constr Build Mater. 2015;95:29–44.  https://doi.org/10.1016/j.conbuildmat.2015.07.142.Google Scholar
  50. 50.
    Çevik A, Alzeebaree R, Humur G, Niş A, Gülşan ME. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int. 2018;44(11):12253–64.  https://doi.org/10.1016/j.ceramint.2018.04.009.Google Scholar
  51. 51.
    Hanif A, Parthasarathy P, Ma H, Fan T, Li Z. Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cem Concr Compos. 2017;81:35–48.  https://doi.org/10.1016/j.cemconcomp.2017.04.008.Google Scholar
  52. 52.
    Singh NB, Kalra M, Saxena SK. Nanoscience of Cement and Concrete. Mater Today Proc. 2017;4(4, Part E):5478–87.  https://doi.org/10.1016/j.matpr.2017.06.003.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials (University of Jinan), Engineering Center of Advanced Building Materials of Ministry of EducationUniversity of JinanJinanChina

Personalised recommendations