Advertisement

Experimental study on the smoke temperature evolution in a polyethylene (PE)-lined compartment on fire

  • Junhui GongEmail author
  • Di Wang
  • Long Shi
  • Xuanya LiuEmail author
  • Ye Chen
  • Guomin Zhang
Article
  • 17 Downloads

Abstract

Smoke temperature evolution in the upper layer of compartment fire, which is critical for the prediction of potential flashover, was experimentally investigated in a real building. Three-millimeter polyethylene (PE) slabs attached on the internal walls were employed as the lining material to address the effect of the melting and combustion of the lining material on the smoke temperature. A corner gasoline pool fire was utilized as the fire source. Two thermocouple trees, mounted vertically at the center and the open door, and a high-definition camera were utilized to record the smoke temperature history and experimental video. Meanwhile, some furniture was loaded to study its enhancement feature on fire intensity. Heat release rates (HRRs) at different stages were analyzed based on MQH method (McCaffrey, Quintiere and Harkleroad) and pool fire theory. Smoke temperature was estimated through an improved MQH correlation considering the melting of the PE slabs and an empirical model, BFD curve (Barnett in Fire Saf J 37: 437–463, 2002) combined. The results show that both the maximum HRR and smoke temperature, 925.91 kW and 491.7 °C, are lower than the critical values of flashover. The PE lining greatly intensifies the fire power and the resulting smoke temperature compared with the ones in noncombustible wall scenario. Combustion of the molten PE flowing down from the walls would lead to a secondary peak in smoke temperature curve, which is rarely considered in previous work.

Keywords

Smoke temperature Full-scale compartment fire PE slabs Heat release rate Pool fire 

List of symbols

A

Area (m2)

CP

Specific heat (Jg−1K−1)

D

Diameter of fuel pan (m)

E

Total fire load (J)

EF

Entrainment factor

\(F_{{{\text{O}}_{ 2} }}\)

Opening factor (m1.5)

g

Gravitational acceleration (m s−2)

\(h_{\text{k}}\)

Effective heat transfer coefficient (W m−1 K−1)

H

Height (m)

\(\Delta H\)

Effective heat of combustion (J g−1)

\({\text{HRR}}\)

Heat release rate (J s−1)

K

Thermal conductivity (W m−1 K−1)

\(\dot{m^{\prime\prime}}\)

Burning rate (g m−2 s−1)

\(\dot{q}_{\text{loss}}\)

Heat loss (W)

\(s_{\text{c}}\)

Shape constant

t

Time (s)

T

Temperature (K)

W

Width (m)

v

Fuel burning velocity (m s−1)

Z

Elevation above the virtual source (m)

\(Z_{0}\)

Virtual source location (m)

Greek symbols

\(\delta\)

Thickness (m)

\(\eta\)

Inverse opening factor (m0.5)

\(\kappa \beta\)

Radiative extinction coefficient (m−1)

\(\rho\)

Density (g m−3)

\(\psi\)

Fire load parameter (g m−2)

Subscripts

a

Air

c

Combustion

C

Center

cri

Critical value

E

Entrainment

eff

Effective value

f

Fuel

g

Growth

melt

Melting

m

Maximum value

o

Opening

p

Penetration

pool

Pool fire

s

Smoke

T

Total

w

Wall

Infinite condition

0

Ambient condition

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (51974164), The Open Fund of the Key Laboratory of Building Fire Protection Engineering and Technology of MPS (KFKT2016ZD06) and University Natural Science Research Project in Jiangsu Province (17KJA620003). The authors gratefully appreciate all these supports.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mccaffrey BJ, Quintiere JG, Harkleroad MF. Estimating room temperatures and the likelihood of flashover using fire test data correlations. Fire Technol. 1981;17:98–119.CrossRefGoogle Scholar
  2. 2.
    Peacock RD, Reneke PA, Bukowski RW, Babrauskas V. Defining flashover for fire hazard calculations. Fire Saf J. 1999;32:331–45.CrossRefGoogle Scholar
  3. 3.
    Babrauskas V, Peacock RD, Reneke PA. Defining flashover for fire hazard calculations Part II. Fire Saf J. 2003;38:613–22.CrossRefGoogle Scholar
  4. 4.
    Walton WD, Thomas PH. Estimating temperatures in compartment fires. In: Dinenno P, editor. SFPE handbook of fire protection engineering. 2nd ed. New York: Springer; 1995. p. 134–47.Google Scholar
  5. 5.
    McGrattan K, Hostikka S, Floyd J, Baum H, Rehm R, Mell W, McDermott R. Fire dynamics simulator (version 6) technical reference guide, vol. 1: mathematical model. Gaithersburg: National Institute of Standards and Technology Special Publication; 2013.CrossRefGoogle Scholar
  6. 6.
    Chen CJ, Hsieh WD, Hu WC, Lai CM, Lin TH. Experimental investigation and numerical simulation of a furnished office fire. Build Environ. 2010;45:2735–42.CrossRefGoogle Scholar
  7. 7.
    Yang P, Tan X, Xin W. Experimental study and numerical simulation for a storehouse fire accident. Build Environ. 2011;46:1445–59.CrossRefGoogle Scholar
  8. 8.
    Kolaitis DI, Asimakopoulou EK, Founti MA. Fire behaviour of gypsum plasterboard wall assemblies: CFD simulation of a full-scale residential building. Case Stud Fire Saf. 2016;7:23–35.CrossRefGoogle Scholar
  9. 9.
    Byström A, Cheng X, Wickström U, Veljkovic M. Full-scale experimental and numerical studies on compartment fire under low ambient temperature. Build Environ. 2012;51:255–62.CrossRefGoogle Scholar
  10. 10.
    Bonte F, Noterman N, Merci B. Computer simulations to study interaction between burning rates and pressure variations in confined enclosure fires. Fire Safety J. 2013;62:125–43.CrossRefGoogle Scholar
  11. 11.
    Zhang X, Hu L, Zhang X, Zhu W, Yang L. Flame extension length and temperature profile in thermal impinging flow of buoyant round jet upon a horizontal plate. Appl Therm Eng. 2014;73:15–22.CrossRefGoogle Scholar
  12. 12.
    Zhang X, Tao H, Zhang Z, Tang F, Su G, Chen S, Liu J. Temperature profile beneath an inclined ceiling induced by plume impingement of gas fuel jet flame. Fuel. 2018;223:408–13.CrossRefGoogle Scholar
  13. 13.
    Wang HY. Numerical study of under-ventilated fire in medium-scale enclosure. Build Environ. 2009;44:1215–27.CrossRefGoogle Scholar
  14. 14.
    Suard S, Koched A, Pretrel H, Audouin L. Numerical simulations of fire-induced doorway flows in a small scale enclosure. Int J Heat Mass Transf. 2015;81:578–90.CrossRefGoogle Scholar
  15. 15.
    Sun X, Zhang X, Hu L, Kuwana K. Temperature evolution and transition inside fire compartment with an opening subject to external sideward wind. Proc Combust Inst. 2019;37:3869–77.CrossRefGoogle Scholar
  16. 16.
    Yang D, Hu LH, Jiang YQ, Huo R, Zhu S, Zhao XY. Comparison of FDS predictions by different combustion models with measured data for enclosure fires. Fire Saf J. 2010;45:298–313.CrossRefGoogle Scholar
  17. 17.
    Babrauskas V. COMPF2: a program for calculating post-flashover fire temperatures, NBS technical note 991. Gaithersburg: National Bureau of Standards; 1979.CrossRefGoogle Scholar
  18. 18.
    Jones WW, Peacock RD, Forney GP, Reneke PA. CFAST-consolidated model of fire growth and smoke transport (version 6) technical reference guide, NIST Special Publication 1026. Gaithersburg: National Institute of Standards and Technology; 2009.Google Scholar
  19. 19.
    Rockett JA. Fire induced gas flow in an enclosure. Combust Sci Technol. 1976;12:165–75.CrossRefGoogle Scholar
  20. 20.
    Foote KL, Pagni PJ, Alvares NJ. Temperature correlations for forced-ventilated compartment fires. In: Proceedings of the first international symposium, International Association for Fire Safety Science, Hemisphere Publishing, 1986; pp. 139–148.Google Scholar
  21. 21.
    Wang L, Quintiere JQ. An analysis of compartment fire doorway flows. Fire Saf J. 2009;44:718–31.CrossRefGoogle Scholar
  22. 22.
    Quintiere JQ, Wang L. A general formula for the prediction of vent flows. Fire Saf J. 2009;44:789–92.CrossRefGoogle Scholar
  23. 23.
    Karlsson B, Quintiere J. Enclosure fire dynamics. Boca Raton: CRC Press; 1999.CrossRefGoogle Scholar
  24. 24.
    Johansson N, Svensson S, Hees P. An evaluation of two methods to predict temperatures in multi-room compartment fires. Fire Safety J. 2015;77:46–58.CrossRefGoogle Scholar
  25. 25.
    Beji T, Verstockt S, Walle RVD, Merci B. Global analysis of multi-compartment full-scale fire tests (‘Rabot2012’). Fire Saf J. 2015;76:9–18.CrossRefGoogle Scholar
  26. 26.
    Tsai KC, Chen HH. Experimental study of fuel sootiness effects on flashover. J Hazard Mater. 2010;178:123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mizukami T, Utiskul Y, Quintiere JG. A compartment burning rate algorithm for a zone model. Fire Saf J. 2016;79:57–68.CrossRefGoogle Scholar
  28. 28.
    Fu Z, Hadjisophocleous G. A two-zone fire growth and smoke movement model for multi-compartment buildings. Fire Saf J. 2000;34:257–85.CrossRefGoogle Scholar
  29. 29.
    Zhang X, Hadjisophocleous G. An improved two-layer zone model applicable to both pre- and post-flashover fires. Fire Saf J. 2012;53:63–71.CrossRefGoogle Scholar
  30. 30.
    Evegren F, Wickström U. New approach to estimate temperatures in pre-flashover fires: lumped heat case. Fire Saf J. 2015;72:77–86.CrossRefGoogle Scholar
  31. 31.
    Nishino T. Two-layer zone model including entrainment into the horizontally spreading smoke under the ceiling for application to fires in large area rooms. Fire Saf J. 2017;91:355–60.CrossRefGoogle Scholar
  32. 32.
    Barnett CR. BFD curve: a new empirical model for fire compartment temperatures. Fire Saf J. 2002;37:437–63.CrossRefGoogle Scholar
  33. 33.
    Pope ND, Bailey CG. Quantitative comparison of FDS and parametric fire curves with post-flashover compartment fire test data. Fire Saf J. 2006;41:99–110.CrossRefGoogle Scholar
  34. 34.
    Barnett CR. Replacing international temperature-time curves with BFD curve. Fire Saf J. 2007;42:321–7.CrossRefGoogle Scholar
  35. 35.
    Deal S, Beylert C. Correlating preflashover room fire temperatures. J Fire Prot Eng. 1990;2:33–48.CrossRefGoogle Scholar
  36. 36.
    Mowrer FW, Williamson RB. Estimating room temperatures from fires along walls and in corners. Fire Technol. 1987;23:133–45.CrossRefGoogle Scholar
  37. 37.
    Dhurandher BK, Kumar R, Dhiman AK, Gupta A. Investigation of thermal equilibrium in a compartment involving crib fire. J Therm Anal Calorim. 2017;129:1787–97.CrossRefGoogle Scholar
  38. 38.
    Tao Z, Yang R, Li C, Yao Y, Zhu P, Zhang H. Experimental study on liquid fire behavior at different effective ceiling heights in a full-size simulated cargo compartment. J Therm Anal Calorim. 2018;133:1617–26.CrossRefGoogle Scholar
  39. 39.
    Chaudhary A, Gupta A, Kumar S, Kumar R. Thermal environment induced by jatropha oil pool fire in a compartment. J Therm Anal Calorim. 2017;127:2397–415.CrossRefGoogle Scholar
  40. 40.
    Zhang S, Ni X, Zhao M, Zhang R, Zhang H. Experimental study on the characteristics of wood crib fire in a confined space with different ventilation conditions. J Therm Anal Calorim. 2015;120:1383–91.CrossRefGoogle Scholar
  41. 41.
    Zhang J, Shields TJ, Silcock GWH. Fire hazard assessment of polypropylene wall linings subjected to small ignition sources. J Fire Sci. 1996;14:67–84.CrossRefGoogle Scholar
  42. 42.
    Zhang J, Silcock GWH, Shields TJ. Study of the combustion and fire retardancy of polyacrylonitrile and its copolymers by using cone calorimetry. J Fire Sci. 1995;13:141–61.CrossRefGoogle Scholar
  43. 43.
    Babrauskas V. Estimating large pool fire burning rates. Fire Technol. 1983;19:251–61.CrossRefGoogle Scholar
  44. 44.
    Mannan S. Lees’ loss prevention in the process industries: Hazard identification, assessment and control. Waltham: Elsevier Butterworth-Heinemann Publications; 2005.Google Scholar
  45. 45.
    Babrauskas V. Heat release rates, SFPE handbook of fire protection engineering. Quincy: National Fire Protection Association; 2002.Google Scholar
  46. 46.
    Asadi I, Shafigh P, Hassan ZFBA, Mahyuddina NB. Thermal conductivity of concrete—a review. J Build Eng. 2018;20:81–93.CrossRefGoogle Scholar
  47. 47.
    Mark JE. Physical properties of polymers handbook. New York: Springer; 2007.CrossRefGoogle Scholar
  48. 48.
    Noaki M, Delichatsios MA, Yamaguchi JI, Ohmiya Y. Heat release rate of wooden cribs with water application for fire suppression. Fire Saf J. 2018;95:170–9.CrossRefGoogle Scholar
  49. 49.
    Babrauskas V. Estimating room flashover potential. Fire Technol. 1980;16:94–103.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.College of Safety Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Key Laboratory of Building Fire Protection Engineering and Technology of MPSTianjinChina
  3. 3.Department of Fire Protection EngineeringUniversity of MarylandCollege ParkUSA
  4. 4.Civil and Infrastructure Engineering Discipline, School of EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations