Advertisement

Optical and thermal properties of intelligent pH indicator films based on chitosan/PVA and a new xanthylium dye

  • Iulia Păușescu
  • Anamaria Todea
  • Valentin Badea
  • Francisc Peter
  • Mihai MedeleanuEmail author
  • Ionuț Ledeți
  • Gabriela Vlase
  • Titus Vlase
Article
  • 21 Downloads

Abstract

Intelligent food packaging systems register and monitor food quality through data carriers, sensors or indicators. Food spoilage often leads to pH variations which can be easily evidenced through a colorimetric pH indicator. The objective of this study was to obtain and characterize intelligent pH indicator films based on biopolymers, namely chitosan and polyvinyl alcohol, doped with a new bio-inspired synthetic dye. UV–Vis, FTIR and 1D and 2D NMR techniques were used to characterize the xanthylium dye. The pH-dependent photochromic properties of the synthesized compound were confirmed through a UV–Vis spectroscopy study. The indicator films were obtained by using the solvent casting technique, and their optical and thermal properties were evaluated. When subjected to pH variations in aqueous solutions and in milk stored at improper temperatures, the films showed color changes. The thermal properties of the dye-containing films were evaluated through TG/DTG analysis. It was found that the inclusion of the dye does not change the thermal behavior of the films compared with that of the dye-free chitosan, PVA and chitosan/PVA blended films.

Keywords

pH indicators Intelligent packaging Chitosan PVA Dye 

Notes

Supplementary material

10973_2019_8911_MOESM1_ESM.docx (879 kb)
Supplementary material 1 (DOCX 788 kb)

References

  1. 1.
    Poyatos-Racionero E, Ros-Lis JV, Vivancos J-L, Martínez-Manez R. Recent advances on intelligent packaging as tools to reduce food waste. J Clean Prod. 2018;172:3398–409.CrossRefGoogle Scholar
  2. 2.
    Commission regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. OJL135, 30.05.2009. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R0450&from=EN. Accessed 2 Sept 2019.
  3. 3.
    Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B. Intelligent food packaging: the next generation. Trends Food Sci Technol. 2014;39:47–62.CrossRefGoogle Scholar
  4. 4.
    Rukchon C, Nopwinyuwong A, Trevanich S, Jinkarn T, Suppakul P. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta. 2014;130:547–54.CrossRefGoogle Scholar
  5. 5.
    Pourjavaher S, Almasi H, Meshkini S, Pirsa S, Parand E. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr Polym. 2017;156:193–201.CrossRefGoogle Scholar
  6. 6.
    Halász K, Csóka L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag Shelf Life. 2018;16:185–93.CrossRefGoogle Scholar
  7. 7.
    Kuswandi B, Restyana A, Abdullah A, Heng LY, Ahmad M. A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control. 2012;25:184–9.CrossRefGoogle Scholar
  8. 8.
    Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK. Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci. 2013;38:1653–89.CrossRefGoogle Scholar
  9. 9.
    Othman SH. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia. 2014;2:296–303.Google Scholar
  10. 10.
    Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38:1629–52.CrossRefGoogle Scholar
  11. 11.
    van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG. Chitosan films and blends for packaging material. Carbohydr Polym. 2015;116:237–42.CrossRefGoogle Scholar
  12. 12.
    Cazon P, Velazquez G, Ramirez JA, Vázquez M. Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids. 2017;68:136–48.CrossRefGoogle Scholar
  13. 13.
    Masti S, Kasai D, Mudigoudra B, Chougale R. Effect of gum acacia (GA) on tensile properties of biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA) polymer blend films. Res J Mater Sci. 2016;4(5):5–8.Google Scholar
  14. 14.
    Pereira VA Jr, Queiroz de Arruda IN, Stefani R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids. 2015;43:180–8.CrossRefGoogle Scholar
  15. 15.
    Yoshida CMP, Maciel VBV, Mendonça MED, Franco TT. Chitosan biobased and intelligent films: monitoring pH variations. LWT Food Sci Technol. 2014;55:83–9.CrossRefGoogle Scholar
  16. 16.
    Choi I, Lee JY, Lacroix M, Han J. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem. 2017;218:122–8.CrossRefGoogle Scholar
  17. 17.
    Ma Q, Liang T, Cao L, Wang L. Intelligent poly(vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. Int J Biol Macromol. 2018;108:576–84.CrossRefGoogle Scholar
  18. 18.
    Zhang J, Zou X, Zhai X, Huang XW, Jiang C, Holmes M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem. 2019;272:306–12.CrossRefGoogle Scholar
  19. 19.
    Patrocínio AOT, Mizoguchi SK, Paterno LG, Garcia CG, Murakami Iha NY. Efficient and low cost devices for solar energy conversion: efficiency and stability of some natural-dye-sensitized solar cells. Synth Met. 2009;159:2342–4.CrossRefGoogle Scholar
  20. 20.
    Moro AJ, Parola AJ, Pina F, Pana A-M, Badea V, Pausescu I, Shova S, Cseh L. 2,2′-Spirobis[chromene] derivatives chemistry and their relation with the multistate system of anthocyanins. J Org Chem. 2017;82:5301–9.CrossRefGoogle Scholar
  21. 21.
    Alejo-Armijo A, Corici L, Cseh L, Aparaschivei D, Moro AJ, Parola AJ, Lima JC, Pina F. Achieving complexity at the bottom. 2,6-Bis(arylidene) cyclohexanones and anthocyanins: the same general multistate of species. ACS Omega. 2018;3:17853–62.CrossRefGoogle Scholar
  22. 22.
    Alejo-Armijo A, Moro AJ, Parola AJ, Lima JC, Pina F, Corici L, Shova S, Cseh L. Generalization of the anthocyanins kinetics and thermodynamics multistate to 2,6-bis(2-hydroxybenzylidene)cyclohexanones. Dyes Pigments. 2019;163:573–88.CrossRefGoogle Scholar
  23. 23.
    Pelissari FM, Yamashita F, Grossmann MVE. Extrusion parameters related to starch ⁄chitosan active films properties. Int J Food Sci Technol. 2011;46:702–10.CrossRefGoogle Scholar
  24. 24.
    Ali ASF. Mechanical and thermal properties of promising polymer composites for food packaging applications. IOP Conf Ser Mater Sci Eng. 2016;137:012035.CrossRefGoogle Scholar
  25. 25.
    Carmody WR. An easily prepared wide range buffer series. J Chem Educ. 1961;38(11):559–60.CrossRefGoogle Scholar
  26. 26.
    Merlusca IP, Matiut DS, Lisa G, Silion M, Gradinaru L, Oprea S, Popa IM. Preparation and characterization of chitosan-poly(vinyl alcohol)-neomycin sulfate films. Polym Bull. 2018;75(9):3971–86.CrossRefGoogle Scholar
  27. 27.
    Budrugeac P. Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2008;92(1):291–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Iulia Păușescu
    • 1
  • Anamaria Todea
    • 1
  • Valentin Badea
    • 1
  • Francisc Peter
    • 1
  • Mihai Medeleanu
    • 1
    Email author
  • Ionuț Ledeți
    • 2
  • Gabriela Vlase
    • 3
  • Titus Vlase
    • 3
  1. 1.Faculty of Industrial Chemistry and Environmental EngineeringPolitehnica University of TimişoaraTimisoaraRomania
  2. 2.Faculty of PharmacyUniversity of Medicine and Pharmacy “Victor Babeş”TimisoaraRomania
  3. 3.Research Center for Thermal Analysis in Environmental Problems, Faculty of Chemistry-Biology-GeographyWest University of TimisoaraTimisoaraRomania

Personalised recommendations