Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3689–3699 | Cite as

Influence of mesoporous structure ZSM-5 zeolite on the degradation of Urban plastics waste

  • Taihana Parente Paula
  • Maria F. Vieira MarquesEmail author
  • Mônica Regina da Costa Marques


In the present work, mesoporous ZSM-5 zeolite structures were developed by means of post-synthesis modification and direct synthesis and the materials were applied as pyrolysis catalysts of different sources of plastic waste. The plastic wastes were purchased from a cooperative of selective collection, classified as polyethylene, polypropylene and polystyrene, which were used in plastic mixtures with quantities consistent with the Brazilian Association of the Plastic Industry (ABIPLAST) in order to simulate urban plastic waste in Brazil. Previously, these plastic waste mixtures were extruded with 10% m/m of catalyst and thermogravimetric analysis was performed. It was possible to observe the decrease in degradation temperatures, as well as additional degradation steps in catalytic pyrolysis compared to thermal pyrolysis. The synthesized mesoporous ZSM-5 zeolite was the catalyst with higher performance in the pyrolysis of plastic waste mixtures due to the higher proportion of strong to weak acid sites.


Chemical recycling Catalytic pyrolysis Zeolites Mesoporous structures 



The authors would like to thank the Brazilian Council for Scientific and Technological Development (CNPq) and the IMA/UFRJ Laboratories.

Compliance with ethical standards

Conflict of interest

The author (s) declared in the potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    Syamsiro M, Saptoadi H, Norsujianto T, Noviasri SC, Alimuddin Z, Yoshikawa K. Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia. 2014;47:180–8.CrossRefGoogle Scholar
  2. 2.
    Kalargaris I, Tian G, Gu S. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process Technol. 2017;157:108–15.CrossRefGoogle Scholar
  3. 3.
    Muhammad C, Onwudili JA, Williams PT. Thermal degradation of real-world waste plastics and simulated mixed plastics in a two-stage pyrolysis–catalysis reactor for fuel production. Energy Fuels. 2015;29(4):2601–9.CrossRefGoogle Scholar
  4. 4.
    Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK. A review on pyrolysis of plastic wastes. Energy Convers Manag. 2016;115:308–26.CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Yang X, Fu Z, Li R, Wu Y. Synergistic effect of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5. J Therm Anal Calorim. 2019. Scholar
  6. 6.
    Patni N, Shah P, Agarwal S, Singhal P. Alternate strategies for conversion of waste plastic to fuels. ISRN Renew Energy. 2013;2013:902053. Scholar
  7. 7.
    Al-Salem SM, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 2009;29(10):2625–43.CrossRefGoogle Scholar
  8. 8.
    Cafiero L, Fabbri D, Trinca E, Tuffi R, Criprioti SV. Thermal and spectroscopic (TG/DSC–FTIR) characterization of mixed plastics for materials and energy recovery under pyrolytic conditions. J Therm Anal Calorim. 2015;121(3):1111–9.CrossRefGoogle Scholar
  9. 9.
    Chandrasekaran SR, Kunwar B, Moser BR, Rajagopalan N, Sharma BK. Catalytic thermal cracking of postconsumer waste plastics to fuels. 1. Kinetics and optimization. Energy Fuels. 2015;29(9):6068–77.CrossRefGoogle Scholar
  10. 10.
    Li Y, Xing X, Ma P, Zhang X, Wu Y, Huang L. Effect of alkali and alkaline earth metals on co-pyrolysis characteristics of municipal solid waste and biomass briquettes. J Therm Anal Calorim. 2019;1–10.Google Scholar
  11. 11.
    Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS. Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot. 2016;102:822–38.CrossRefGoogle Scholar
  12. 12.
    Li K, Lei J, Yuan G, Weerachanchai P, Wang J, Zhao J, Yang Y. Fe-, Ti-, Zr-and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics. Chem Eng J. 2017;317:800–9.CrossRefGoogle Scholar
  13. 13.
    Elordi G, Olazar M, Lopez G, Castaño P, Bilbao J. Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. Appl Catal B. 2011;102(1):224–31.CrossRefGoogle Scholar
  14. 14.
    Zhang X, Lei H, Yadavalli G, Zhu L, Wei Y, Liu Y. Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel. 2015;144:33–42.CrossRefGoogle Scholar
  15. 15.
    Ratnasari DK, Nahil MA, Williams PT. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J Anal Appl Pyrolysis. 2017;124:631–7.CrossRefGoogle Scholar
  16. 16.
    Kumar S, Panda AK, Singh RK. A review on tertiary recycling of high-density polyethylene to fuel. Resour Conserv Recycl. 2011;55:893–910.CrossRefGoogle Scholar
  17. 17.
    Obali Z, Sezgi NA, Doğu T. Catalytic degradation of polypropylene over alumina loaded mesoporous catalysts. Chem Eng J. 2012;207:421–5.CrossRefGoogle Scholar
  18. 18.
    Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A. 2014;470:115–22.CrossRefGoogle Scholar
  19. 19.
    Djinović P, Tomse T, Grdadolnik J, Bozic S, Erjavec B, Zabilskiy M, Pintar A. Natural aluminosilicates for catalytic depolymerization of polyethylene to produce liquid fuel-grade hydrocarbons and low olefins. Catal Today. 2015;258:648–59.CrossRefGoogle Scholar
  20. 20.
    Galarneau A, Villemot F, Rodriguez J, Fajula F, Coasne B. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir. 2014;30(44):13266–74.CrossRefGoogle Scholar
  21. 21.
    Bertrand-Drira C, Cheng X, Cacciaguerra T, Trens P, Melinte G, Ersen O, Minoux D, Finiels A, Fajula F, Gerardin C. Mesoporous mordenites obtained by desilication: mechanistic considerations and evaluation in catalytic oligomerization of pentene. Microporous Mesoporous Mater. 2015;213:142–9.CrossRefGoogle Scholar
  22. 22.
    Alves IC, Nascimento TLPM, Veloso CO, Zotin FMZ, Henriques CA. Geração de mesoporos em zeólitas ZSM-5 e seus efeitos na conversão do etanol em olefinas. Quim Nova. 2012;35(8):1554–9.CrossRefGoogle Scholar
  23. 23.
    Almeida, D. Pirólise de Resíduos de Polietileno e Polipropileno empregando diferentes catalisadores para a obtenção de insumos petroquímicos. 2016. Total de 177 Folhas. Tese (Doutorado em Ciências e Tecnologia de Polímeros)—Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro. 2016.Google Scholar
  24. 24.
    Xue T, Liu H, Zhang Y, Wu H, Wu P, He M. Synthesis of ZSM-5 with hierarchical porosity: in situ conversion of the mesoporous silica-alumina species to hierarchical zeolite. Microporous Mesoporous Mater. 2017;242:190–9.CrossRefGoogle Scholar
  25. 25.
    ABIPLAST (2016). In: Scholar
  26. 26.
    Paixão V, Carvalho AP, Rocha J, Fernandes A, Martins A. Modification of MOR by desilication treatments: structural, textural and acidic characterization. Microporous Mesoporous Mater. 2010;131(1–3):350–7.CrossRefGoogle Scholar
  27. 27.
    Jin H, Ansari MB, Jeong EY, Park SE. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. J Catal. 2012;291:55–62.CrossRefGoogle Scholar
  28. 28.
    Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds. New York: Wiley; 2014.Google Scholar
  29. 29.
    Bower DI, Maddams WF. The vibrational spectroscopy of polymers. Cambridge: Cambridge University Press; 1992.Google Scholar
  30. 30.
    Ma C, Sun L, Jin L, Zhou C, Xiang J, Hu S, Su S. Effect of polypropylene on the pyrolysis of flame retarded high impact polystyrene. Fuel Process Technol. 2015;135:150–6.CrossRefGoogle Scholar
  31. 31.
    Saviello D, et al. Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem J. 2016;124:868–77.CrossRefGoogle Scholar
  32. 32.
    Coutinho F, Mello IL Maria LCDS. Polietileno: principais tipos, propriedades e aplicações. Polím Ciênc Tecnol. 2003;13(1):1–13.CrossRefGoogle Scholar
  33. 33.
    Handbook PD. Mark, JE, Ed. 1999.Google Scholar
  34. 34.
    Billmeyer FWJ. Textbook of polymer science. New York: Wiley-Interscience; 1987.Google Scholar
  35. 35.
    Líbano EVDG, Visconte LL, Pacheco EBAV. Propriedades térmicas de compósitos de polipropileno e bentonita organofílica. Polímeros. 2012;22(5):430–5.CrossRefGoogle Scholar
  36. 36.
    Worzakowska M. Thermal and mechanical properties of polystyrene modified with esters derivatives of 3-phenylprop-2-en-1-ol. J Therm Anal Calorim. 2015;121(1):235–43.CrossRefGoogle Scholar
  37. 37.
    Aguado J, Serrano DP, San Miguel G, Rodríguez JM. Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins. J Anal Appl Pyrolysis. 2007;78(1):153–61.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Taihana Parente Paula
    • 1
  • Maria F. Vieira Marques
    • 1
    Email author
  • Mônica Regina da Costa Marques
    • 2
  1. 1.Instituto de Macromoléculas Professora Eloisa ManoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de QuímicaUniversidade do Estado Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations