Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3789–3796 | Cite as

Physical–chemical characterization of N-acylhydrazone derivative chitosan films using spectroscopic and thermoanalytical techniques

  • Davidson M. S. Wanderley
  • Demis F. Melo
  • Laryssa M. Silva
  • Wesley C. Silva
  • Lidiane P. Correia
  • João A. Oshiro-Junior
  • Marcus V. L. Fook
  • Ricardo O. Moura
  • Rosemary S. C. Lima
  • Bolívar P. G. L. DamascenoEmail author
Article

Abstract

The N-acylhydrazone subunit is present in several bioactive molecules and drug prototype candidates, yet it remains under-explored. The association of an N-acylhydrazone derivative (JR19) with chitosan (CHI), a biopolymer with attractive pharmaceutical characteristics, may represent an innovative proposal for the treatment of topical inflammation. The aim of this work was to perform a physical–chemical characterization of chitosan films containing JR19 using differential scanning calorimetry (DSC), thermogravimetry and its derivative (TG/DTG), Fourier-transform infrared spectroscopy, and X-ray diffraction techniques. The films were developed using the sol–gel process and, according to the DSC curves, demonstrated the compatibility of the physical mixture (CHI + JR19) and the absence of chemical incompatibility of the polymer films incorporated with JR19. The TG/DTG presented similar characteristics of loss of mass between the samples, the prevailing characteristics of CHI. The infrared spectra of the physical mixture and the film with the molecule exhibited bands characteristic of the functional groups of JR19 in the same absorption region. The reflections observed in the diffractograms indicated a decrease in the crystallinity of the films when compared to the physical mixture and omission of some reflections of JR19 in the films. Therefore, the techniques used enabled the characterization of the formulation of CHI and JR19, proving very promising for the development of these films/dressings as an innovative proposal for pharmaceutical treatment, considering their low cost, biocompatibility, and the biological properties of JR19 against different diseases (parasitic, viral, bacterial, fungal, analgesic, anti-inflammatory, and antitumor).

Keywords

Compatibility Fourier-transform infrared spectroscopy Polymer film X-ray diffraction Thermal behavior 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brasília, Brazil).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Amaral AT, Andrade CH, Kümmerle AE, Guido RVC. The evolution of medicinal chemistry in Brazil: advances in the 40 years of the Brazilian society of chemistry. Quím Nova. 2017;40:694–7.Google Scholar
  2. 2.
    Maia RC, Tesch R, Fraga CAM. Acylhydrazone derivatives: a patent review. Expert Opin Ther Pat. 2014;24:1161–70.CrossRefGoogle Scholar
  3. 3.
    Repich HH, Orysyk SI, Orysyk VV, Zborovskii YuL, Pekhnyo VI, Vovk MV. Synthesis, crystal structure and spectral characterization of the first Ag+ complex compounds involving O,N,O-coordinated N-acylhydrazones of salicylaldehyde. J Mol Struct. 2017;1144:225–36.CrossRefGoogle Scholar
  4. 4.
    Serafim RAM, Gonçalves JE, Souza FP, Loureiro APM, Storpirtis S, Krogh R, Andricopulo AD, Dias LC, Ferreira EI. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur J Med Chem. 2014;82:418–25.CrossRefGoogle Scholar
  5. 5.
    Rogolino D, Carcelli M, Bacchi A, Compari C, Contardi L, Fisicaro E, Gatti A, Sechi M, Stevaert A, Naesens L. A versatile salicyl hydrazonic ligand and its metal complexes as antiviral agents. J Inorg Biochem. 2015;150:9–17.CrossRefGoogle Scholar
  6. 6.
    Nastasă C, Tiperciuc B, Durma M, Benedec D, Oniga O. New hydrazones bearing thiazole scaffold: synthesis, characterization, antimicrobial, and antioxidant investigation. Molecules. 2015;20:17325–38.CrossRefGoogle Scholar
  7. 7.
    Lazzarini C, Haranahalli K, Rieger R, Ananthula HK, Desai PB, Ashbaugh A, Linke MJ, Cushion MT, Ruzsicska B, Haley J, Ojima I, Del Poeta M. Acylhydrazones as antifungal agents targeting the synthesis of fungal sphingolipids. Antimicrob Agents Chemother. 2018.  https://doi.org/10.1128/AAC.00156-18.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Silva TF, Bispo Júnior W, Alexandre-Moreira MS, Costa FN, Monteiro CE, Ferreira FF, Barroso RC, Noël F, Sudo RT, Zapata-Sudo G, Lima LM, Barreiro EJ. Novel orally active analesic and anti-inflammatory cyclohexyl-N-acylhydrazone derivatives. Molecules. 2015;20:3067–88.CrossRefGoogle Scholar
  9. 9.
    Meira CS, Filho JMS, Sousa CC, Anjos PS, Cerqueira JV, Neto HAD, Silveira RG, Russo HM, Wolfender JL, Queiroz EF, Moreira DRM, Soares MBP. Structural design, synthesis and substituent effect of hydrazone-N-acylhydrazones reveal potent immunomodulatory agents. Bioorg Med Chem. 2018;26:1971–85.CrossRefGoogle Scholar
  10. 10.
    Hosny NM, El Morsy ESA, Sherif YE. Synthesis, spectral, optical and anti-inflammatory activity of complexes derived from 2-aminobenzohydrazide with some rare earths. J Rare Earths. 2015;33:758–64.CrossRefGoogle Scholar
  11. 11.
    Rodrigues DA, Ferreira-Silva GÀ, Ferreira ACS, Fernandes RA, Kwee JK, Sant’Anna CMR, Lonta M, Fraga CAM. Design, synthesis, and pharmacological evaluation of novel N-acylhydrazone derivatives as potent histone deacetylase 6/8 dual inhibitors. J Med Chem. 2016;59:655–70.CrossRefGoogle Scholar
  12. 12.
    Jarczyk-Jedryka A, Filapek M, Malecki G, Kula S, Janeczek H, Boharewicz B, Iwan A, Schab-Balcerzak E. Symmetrical N-acylsubstituted dihydrazones containing bithiophene core-photophysical, electrochemical and thermal characterization. Spectrochim Acta A Mol Biomol Spectrosc. 2016;159:169–76.CrossRefGoogle Scholar
  13. 13.
    Lino MES, Ruela ALM, Trevisan MG, Pereira GR. Influence of hydration and crosslinking in transdermal delivery of nicotine from chitosan-based gels by thermal analysis. J Therm Anal Calorim. 2017;130:1455–61.CrossRefGoogle Scholar
  14. 14.
    Bajapai M, Bajpai SK, Jyotishi P. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films. Int J Biol Macromol. 2016;84:1–9.CrossRefGoogle Scholar
  15. 15.
    Silva PCD, Portela AS, Lima RSC, Santana CP, Medeiros ACD, Simões MOS. Compatibility study between lipoic acid with polymers used in controlled drug release systems. J Therm Anal Calorim. 2016;123:965–71.CrossRefGoogle Scholar
  16. 16.
    Yin TT, Zhao ZX, Yu LY, Zhang HX. Theoretical study on the thermal cistrans isomerization of novel acylhydrazone photoswitches. Org Electron. 2017;48:154–64.CrossRefGoogle Scholar
  17. 17.
    Moraes ADT, Miranda MDS, Jacob ITT, Amorim CA, Moura RO, Silva SAS, Soares MBP, Almeida SMV, Souza TRC, Oliveira JF, Silva TG, Melo CML, Moreira DRM, Lima MC. Synthesis, in vitro and in vivo biological evaluation, COX-1/2 inhibition and molecular docking study of indole-N-acylhydrazone derivatives. Bioorg Med Chem. 2018;26:5388–96.CrossRefGoogle Scholar
  18. 18.
    Devi N, Dutta J. Preparation and characterization of chitosan–bentonite nanocomposite films for wound healing application. Int J Biol Macromol. 2017;104:1897–904.CrossRefGoogle Scholar
  19. 19.
    Osório LR, Meneguin AB, Silva HB, Barreto HM, Osajima JA, Filho ECS. Evaluation of physico-chemical properties and antimicrobial synergic effect of ceftazidime-modified chitosan. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7332-6.CrossRefGoogle Scholar
  20. 20.
    Lopéz FA, Mercê ALR, Alguacil FJ, López-Delgado A. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91:633–9.CrossRefGoogle Scholar
  21. 21.
    Buriti JS, Barreto MEV, Santos KO, Fook MVL. Thermal, morphological, spectroscopic and biological study of chitosan, hydroxyapatite and wollastonite biocomposites. J Therm Anal Calorim. 2018;134:1521–30.CrossRefGoogle Scholar
  22. 22.
    Majka TM, Cokot M, Pielichowski K. Studies on the thermal properties and flammability of polyamide 6 nanocomposites surface-modified via layer-by-layer deposition of chitosan and montmorillonite. J Therm Anal Calorim. 2018;131:405–16.CrossRefGoogle Scholar
  23. 23.
    Alves TVG, Costa RS, Gomes ATA, Costa CEF, Perego P, Júnior JOCS, Converti A, Costa RMR. Quality control of Amazonian cocoa (Theobroma cacao L.) by-products and microencapsulated extract by thermal analysis. J Therm Anal Calorim. 2018;134:993–1000.CrossRefGoogle Scholar
  24. 24.
    Rojek B, Wesolowski M. Compatibility studies of hydrocortisone with excipients using thermogravimetric analysis supported by multivariate statistical analysis. J Therm Anal Calorim. 2017;127:543–53.CrossRefGoogle Scholar
  25. 25.
    Pandey MK, Khan AR, Saxena AK. Synthesis and thermal analysis of phosphonitrile-core-bearing aromatic nitriles for high-temperature applications. J Therm Anal Calorim. 2017;129:1453–62.CrossRefGoogle Scholar
  26. 26.
    Konnola R, Nair CPR, Joseph K. Cross-linking of carboxyl-terminated nitrile rubber with polyhedral oligomeric silsesquioxane. J Therm Anal Calorim. 2016;123:1479–89.CrossRefGoogle Scholar
  27. 27.
    Ke H, Pang Z, Peng B, Wang J, Cai Y, Huang F, Wei Q. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver. J Therm Anal Calorim. 2016;123:1293–307.CrossRefGoogle Scholar
  28. 28.
    Weng R, Chen L, Lin S, Zhang H, Wu H, Liu K, Cao S, Huang L. Preparation and characterization of antibacterial cellulose/chitosan nanofiltration membranes. Polymers. 2017;9:1–13.CrossRefGoogle Scholar
  29. 29.
    Seghir BB, Benhamza MH. Preparation, optimization and characterization of chitosan polymer from shrimp shells. Food Meas. 2017;11:1137–47.CrossRefGoogle Scholar
  30. 30.
    Reis TA, Matos BN, Lima EM, Chaker JA, Gratieri T, Cunha-Filho MSS, Gelfuso GM. Oxaliplatin preformulation studies for the development of innovative topical drug delivery systems. J Therm Anal Calorim. 2017;130:1671–81.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Davidson M. S. Wanderley
    • 1
    • 2
  • Demis F. Melo
    • 1
    • 2
  • Laryssa M. Silva
    • 3
  • Wesley C. Silva
    • 3
  • Lidiane P. Correia
    • 3
  • João A. Oshiro-Junior
    • 1
    • 2
  • Marcus V. L. Fook
    • 4
  • Ricardo O. Moura
    • 1
    • 3
    • 5
  • Rosemary S. C. Lima
    • 3
  • Bolívar P. G. L. Damasceno
    • 1
    • 2
    • 3
    Email author
  1. 1.Graduation Program in Pharmaceutical Sciences, Center for Biological and Health SciencesState University of Paraíba (UEPB)Campina GrandeBrazil
  2. 2.Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Center for Biological and Health SciencesState University of Paraíba (UEPB)Campina GrandeBrazil
  3. 3.Department of PharmacyState University of Paraiba (UEPB)Campina GrandeBrazil
  4. 4.Laboratory of Evaluation and Development of Northeastern BiomaterialsFederal University of Campina Grande (UFCG)Campina GrandeBrazil
  5. 5.Laboratory of Drug Development and SynthesisState University of Paraíba (UEPB)Campina GrandeBrazil

Personalised recommendations