On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements

  • Dandan Qiu
  • Chenglong WangEmail author
  • Lei Luo
  • Songtao Wang
  • Zhiqi Zhao
  • Zhongqi Wang


The increase in hot gas temperature is helpful for the turbine efficiency improvement and energy-saving. The significantly curved leading edge suffers the highest thermal load in a turbine blade. Jet impingement is one of the popular heat transfer enhancement methods, which has been widely used in blade leading edge. In this study, the flow structure and heat transfer characteristics of jets impinging onto a curved surface with varying jet arrangements and Reynolds number (10,000–40,000) are numerically investigated. The relative jet-to-target spacing equals 1, and relative surface curvature equals 10. An array jets arrangement is provided as baseline. Concerning three array cases, jet holes are positioned in inline and staggered patterns with changing jet-to-jet spacing. In this work, streamlines of different sections, limiting streamlines near target wall and vortex, are obtained. Local Nusselt number contour, local Nusselt number curves and surface-averaged Nusselt number are also presented. Local heat transfer characteristics are analyzed with fluid flow. It is also shown that the heat transfer uniformity of both inline and staggered cases is significantly enhanced by comparing with an array jets case. The whole curved surface-averaged Nusselt number increases with increasing jet-to-jet streamwise spacing at inline arrangement.


Heat transfer Fluid flow Jet impingement Concave 

List of symbols


Jet diameter, \({\text{mm}}\)


Target wall diameter, \({\text{mm}}\)


Upper surface diameter, \({\text{mm}}\)


Friction factor


Friction factor for an array jet


Heat transfer coefficient, \({\text{W}}\, {{\text{m}}^{-2} \;{\text{K}^{-1}}}\)


Flow length, \({\text{mm}}\)


Jet-to-jet spacing between middle and adjacent side jets at Y direction, \({\text{mm}}\)


Nusselt number


Averaged Nusselt number


Averaged Nusselt number for an array jet


Jet-to-jet spacing for the same line jets at Y direction, \({\text{mm}}\)


Inlet mass flow average total pressure, \({\text{Pa}}\)


Outlet mass flow average total pressure, \({\text{Pa}}\)


Heat flux, \({\text{W}} {\text{m}}^{-2}\)


Jet Reynolds number


Streamwise direction along the concave target surface


Jet inlet temperature, \({\text{K}}\)


Impingement wall temperature, \({\text{K}}\)


Jet inlet velocity, \({\text{m}}\, {\text{s}^{-1}}\)


Jet-to-impingement surface spacing, \({\text{mm}}\)


Degree between the middle array jets and side arrays, \(^\circ\)


Fluid thermal conductivity, \({\text{W}}\, {{\text{m}^{-1}}\;{\text{K}^{-1}}}\)


Fluid dynamic viscosity, \({\text{Pa}}\;{\text{s}}\)


Fluid density, kg m−3



The author acknowledges the financial support provided by the Natural Science Foundation of China (No. 51706051), China Postdoctoral Science Foundation funded Project (No. 2017M620116), Heilongjiang Postdoctoral Fund (No. LBH-Z17066) and the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2019061).


  1. 1.
    Han JC, Kwak JS. Heat transfer coefficients and film-cooling effectiveness on a gas turbine blade tip. ASME J Heat Transf. 2003;125(3):494–502.Google Scholar
  2. 2.
    Sakakibara J, Hishida K, Phillips WRC. On the vortical structure in a plane impinging jet. J Fluid Mech. 2001;434(434):273–300.Google Scholar
  3. 3.
    Anderson SL, Longmire EK. Particle motion in the stagnation zone of an impinging air jet. J Fluid Mech. 2006;299:333–66.Google Scholar
  4. 4.
    HadŽIabdiĆ M, HanjaliĆ K. Vortical structures and heat transfer in a round impinging jet. J Fluid Mech. 2008;596:221–60.Google Scholar
  5. 5.
    Dairay T, Fortuna V, Lamballais E. Direct numerical simulation of a turbulent jet impinging on a heated wall. J Fluid Mech. 2015;764:362–94.Google Scholar
  6. 6.
    Lytle D, Webb BW. Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf. 1994;37:1687–97.Google Scholar
  7. 7.
    Volkov KN. Interaction of a circular turbulent jet with a flat target. J Appl Mech Tech Phys. 2007;48(1):44–54.Google Scholar
  8. 8.
    Attalla M, Salem M. Heat transfer from a flat surface to an inclined impinging jet. Heat Mass Transf. 2014;50(7):915–22.Google Scholar
  9. 9.
    Agrawal C, Kumar R, Gupta A, Chatterjee B. Determination of rewetting velocity during jet impingement cooling of hot vertical rod. J Therm Anal Calorim. 2016;123(1):861–71.Google Scholar
  10. 10.
    Matheswaran MM, Arjunan TV, Somasundaram D. Analytical investigation of exergetic performance on jet impingement solar air heater with multiple arc protrusion obstacles. J Therm Anal Calorim. 2019;137(1):1–14.Google Scholar
  11. 11.
    Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135(2):1399–415.Google Scholar
  12. 12.
    Tong AY. On the impingement heat transfer of an oblique free surface plane jet. Int J Heat Mass Transf. 2003;46(11):2077–85.Google Scholar
  13. 13.
    Xie Y. Flow and heat transfer characteristics of single jet impinging on dimpled surface. ASME J Heat Transf. 2013;135(5):052201.Google Scholar
  14. 14.
    Weigand B, Spring S. Multiple jet impingement a review. Heat Transf Res. 2011;42(2):101–42.Google Scholar
  15. 15.
    Behbahani AI, Goldstein RJ. Local heat transfer to staggered arrays of impinging circular air jets. ASME J Eng Gas Turbines Power. 1983;105(2):354–60.Google Scholar
  16. 16.
    Huber AM, Viskanta R. Effect of jet-jet spacing on convective heat transfer to confined impinging arrays of axisymmetric air jets. Int J Heat Mass Transf. 1994;37(18):2859–69.Google Scholar
  17. 17.
    Park J, Goodro M, Ligrani P, Fox M, Moon HK. Effects of mach number and Reynolds number on jet array impingement heat transfer. Int J Heat Mass Transf. 2007;50:367–80.Google Scholar
  18. 18.
    Goodro M, Park J, Ligrani P, Fox M, Moon HK. Effects of hole spacing on spatially-resolved jet array impingement heat transfer. Int J Heat Mass Transf. 2008;51:6243–53.Google Scholar
  19. 19.
    Goodro M, Park J, Ligrani P, Fox M, Moon HK. Effect of temperature ratio on jet array impingement heat transfer. ASME J Heat Transf. 2009;131(1):012201.Google Scholar
  20. 20.
    Florschuetz LW, Truman CR, Metzger DE. Streamwise flow and heat transfer distributions for jet array impingement with crossflow. ASME J Heat Transf. 1981;103:337–42.Google Scholar
  21. 21.
    San JY, Lai MD. Optimum Jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets. Int J Heat Mass Transf. 2001;44:3997–4007.Google Scholar
  22. 22.
    Xing Y, Spring S, Weigand B. Experimental and numerical investigation of heat transfer characteristics of inline and staggered arrays of impinging jets. ASME J Heat Transf. 2010;132(9):53–8.Google Scholar
  23. 23.
    Shan Y, Zhang ZJ, Xie GN. Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel. Int J Heat Mass Transf. 2015;86:832–42.Google Scholar
  24. 24.
    Luo L. On the design method and heat transfer mechanism of high efficiency cooling structure in a gas turbine. PhD thesis. China: Harbin Institute of Technology; 2016 (in Chinese).Google Scholar
  25. 25.
    Chupp RE, Helms HE, Mcfadden PW, Brown TR. Evaluation of internal heat-transfer coefficients for impingement-cooled turbine airfoils. J Aircr. 1969;6(3):203–8.Google Scholar
  26. 26.
    Metzger DE. Impingement cooling of concave surfaces with lines of circular air jets. ASME J Eng Gas Turbines Power. 1969;91(3):149–55.Google Scholar
  27. 27.
    Metzger DE, Bunker RS. Local heat transfer in internally cooled turbine airfoil leading edge regions: part i—impingement cooling without film coolant extraction. ASME J Turbomach. 1990;112(3):451–8.Google Scholar
  28. 28.
    Kumar BVNR, Prasad BVSSS. Computational flow and heat transfer of a row of circular jets impinging on a concave surface. Heat Mass Transf. 2007;44(6):667–78.Google Scholar
  29. 29.
    Katti V. Pressure distribution on a semi-circular concave surface impinged by a single row of circular jets. Exp Therm Fluid Sci. 2013;46:162–74.Google Scholar
  30. 30.
    Calzada PDL, Alvarez JJ. Experimental investigation on the heat transfer of a leading edge impingement cooling system for low pressure turbine vanes. ASME J Heat Transf. 2010;132(12):122202.Google Scholar
  31. 31.
    Patil VS, Vedula RP. Local heat transfer for jet impingement onto a concave surface including injection nozzle length to diameter and curvature ratio effects. Exp Therm Fluid Sci. 2018;92:375–89.Google Scholar
  32. 32.
    Jung EY, Chan UP, Dong HL, Kim KM, Cho HH. Effect of the injection angle on local heat transfer in a showerhead cooling with array impingement jets. Int J Therm Sci. 2018;124:344–55.Google Scholar
  33. 33.
    Fluent A. 12.0. Theory guide. 2009.Google Scholar
  34. 34.
    Versteeg H, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. 2nd ed. London: Pearson Education; 2007.Google Scholar
  35. 35.
    Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32:1598–605.Google Scholar
  36. 36.
    Wallin S, Johansson A. A complete explicit algebraic reynolds stress model for incompressible and compressible flows. J Fluid Mech. 2000;403:89–132.Google Scholar
  37. 37.
    ANSYS ICEM CFD. 11.0 Help Manual. ANSYS Inc 2009.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Dandan Qiu
    • 1
  • Chenglong Wang
    • 2
    Email author
  • Lei Luo
    • 1
  • Songtao Wang
    • 1
  • Zhiqi Zhao
    • 1
  • Zhongqi Wang
    • 1
  1. 1.School of Energy Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Science and Technology on Scramjet LaboratoryNational University of Defense TechnologyChangshaChina

Personalised recommendations