Advertisement

Mixed convection characteristics in a baffled U-shaped lid-driven cavity in the presence of magnetic field

  • Yuan Ma
  • Rasul MohebbiEmail author
  • M. M. Rashidi
  • Zhigang Yang
Article
  • 31 Downloads

Abstract

The lattice Boltzmann method is utilized to investigate the mixed convection of a CuO/water nanofluid by magnetic field’s effect in a lid-driven U-shaped enclosure filled with a baffle. The bottom wall’s temperature is high. The Koo–Kleinstreuer–Li model, which considering the Brownian motion of nanoparticles, is adopted to obtain the thermophysical properties of the nanofluid. How the Hartmann number (Ha), Richardson number (Ri), Reynolds number (Re), and nanoparticle concentration (ϕ) affect streamlines, isotherms, and average Nusselt number (Nuave) is also examined. The results reveal that, at Re = 100 and for a large Ri, the nanofluid strategy degrades the Nu. The favorable effect of increasing the Re on the average Nu and adverse trends of the increment in the Ha on the heat transfer are the main highlights in this study. In addition, the increase in the Re more strongly affects the heat transfer rate at higher Ri.

Keywords

Nanofluid KKL model Mixed convection MHD LBM U-shaped lid-driven cavity 

List of symbols

S

Baffle’s position (m)

h

Length of the baffle (m)

ei

Lattice velocity’s direction (m s−1)

f

Density distribution function (kg m−3)

feq

Equilibrium density distribution function (kg m−3)

Ha

Hartmann number

Ri

Richardson number

Nu

Nusselt number

U, V

Non-dimensional velocity components (m s−1)

Pr

Prandtl number

H

Height of the enclosure (m)

W

Mass of the enclosure (m)

cs

Sound’s speed in lattice scale (m s−1)

g

Energy distribution function (K)

geq

Equilibrium energy distribution function (K)

kB

Boltzmann constant

Re

Reynolds number

T

Fluid temperature (K)

k

Thermal conductivity (W K−1 m−1)

Greek symbols

ωi

Mass function in direction i

ϕ

Volume fraction

τc

Relaxation time for temperature

α

Thermal diffusivity (m2 s−1)

ρ

Density (kg m−3)

τv

Relaxation time for flow

β

Thermal expansion coefficient (K−1)

μ

Dynamic viscosity (kg m−1 s−1)

Subscripts

loc

Local

s

Solid particles

nf

Nanofluid

c

Cold

ave

Average

f

Fluid

h

Hot

i

Move direction of single particle

Notes

References

  1. 1.
    Yu Q, Hang X, Liao S. Analysis of mixed convection flow in an inclined lid-driven enclosure with Buongiorno’s nanofluid model. Int J Heat Mass Transf. 2018;126:221–36.CrossRefGoogle Scholar
  2. 2.
    Astanina MS, et al. Mixed convection of Al2O3–water nanofluid in a lid-driven cavity having two porous layers. Int J Heat Mass Transf. 2018;118:527–37.CrossRefGoogle Scholar
  3. 3.
    Cho C-C. Heat transfer and entropy generation of mixed convection flow in Cu-water nanofluid-filled lid-driven cavity with wavy surface. Int J Heat Mass Transf. 2018;119:163–74.CrossRefGoogle Scholar
  4. 4.
    Alsabery AI, et al. Mixed convection of Al2O3–water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;119:939–61.CrossRefGoogle Scholar
  5. 5.
    Oztop HF, Dagtekin I. Mixed convection in two-sided lid-driven differentially heated square cavity. Int J Heat Mass Transf. 2004;47:1761.CrossRefGoogle Scholar
  6. 6.
    Sharif MAR. Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom. Appl Therm Eng. 2007;27:1036.CrossRefGoogle Scholar
  7. 7.
    Akbarinia A, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in horizontal curved ubes. Appl Thermal Eng. 2007;27:1327.CrossRefGoogle Scholar
  8. 8.
    Talebi F, Mahmoudi AH, Shahi M. Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int Commun Heat Mass Transf. 2010;37:79.CrossRefGoogle Scholar
  9. 9.
    Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B Fluids. 2010;29:472.CrossRefGoogle Scholar
  10. 10.
    Chamkha AJ, Abu-Nada E. Mixed convection flow in single-and double-lid driven square cavities filled with water–Al2O3 nanofluid: effect of viscosity models. Eur J Mech B Fluids. 2012;36:82.CrossRefGoogle Scholar
  11. 11.
    Alinia M, Ganji DD, Gorji-Bandpy M. Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model. Int Commun Heat Mass Transf. 2011;38:1428.CrossRefGoogle Scholar
  12. 12.
    Oztop HF, Al-Salem K, Pop I. MHD mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf. 2011;54:3494.CrossRefGoogle Scholar
  13. 13.
    Goodarzi M, Safaei MR, Vafai K, et al. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204.CrossRefGoogle Scholar
  14. 14.
    Garoosi F, Bagheri G, Rashidi MM. Two phase simulation of natural convection and mixed convection of the nanofluid in a square cavity. Powder Technol. 2015;275:239.CrossRefGoogle Scholar
  15. 15.
    Mamourian M, Shirvan KM, Ellahi R, et al. Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int J Heat Mass Transf. 2016;102:544.CrossRefGoogle Scholar
  16. 16.
    Nithyadevi N, Begum AS, Oztop HF, et al. Effects of inclination angle and non-uniform heating on mixed convection of a nanofluid filled porous enclosure with active mid-horizontal moving. Int J Heat Mass Transf. 2017;104:1217.CrossRefGoogle Scholar
  17. 17.
    Selimefendigil F, Öztop HF. Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation. J Taiwan Inst Chem Eng. 2017;70:168.CrossRefGoogle Scholar
  18. 18.
    Ahmadi M, Willing G. Heat transfer measurement in water based nanofluids. Int J Heat Mass Transf. 2018;118:40–7.CrossRefGoogle Scholar
  19. 19.
    Naphon P. Experimental investigation the nanofluids heat transfer characteristics in horizontal spirally coiled tubes. Int J Heat Mass Transf. 2016;93:293–300.CrossRefGoogle Scholar
  20. 20.
    Maskaniyan M, Nazari M, Rashidi S, Mahian O. Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system. Therm Sci Eng Prog. 2018;6:186–93.CrossRefGoogle Scholar
  21. 21.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.CrossRefGoogle Scholar
  22. 22.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.CrossRefGoogle Scholar
  23. 23.
    Rashidi S, Esfahani JA, Maskaniyan M. Applications of magnetohydrodynamics in biological systems—a review on the numerical studies. J Magn Magn Mater. 2017;439:358–72.CrossRefGoogle Scholar
  24. 24.
    Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135(2):1009–19.CrossRefGoogle Scholar
  25. 25.
    Akbarzadeh M, Rashidi S, Masoodi R, Samimi-Abianeh O. Effect of transverse twisted baffles on performance and irreversibilities in a duct. J Thermophys Heat Transf. 2018;33(1):49–62.CrossRefGoogle Scholar
  26. 26.
    Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31(1):218–29.CrossRefGoogle Scholar
  27. 27.
    Rashidi S, Bovand M, Esfahani JA. Opposition of Magnetohydrodynamic and AL2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq. 2016;215:276–84.CrossRefGoogle Scholar
  28. 28.
    Rashidi S, Esfahani JA. The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel. J Magn Magn Mater. 2015;391:5–11.CrossRefGoogle Scholar
  29. 29.
    Chon CH, Kihm KD, Lee SP, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.CrossRefGoogle Scholar
  30. 30.
    Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88:093116.CrossRefGoogle Scholar
  31. 31.
    Mokmeli A, Saffar-Avval M. Prediction of nanofluid convective heat transfer using the dispersion model. Int J Therm Sci. 2010;49:471.CrossRefGoogle Scholar
  32. 32.
    Sheikholeslami M, Gorji-Bandpay M, Ganji DD. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int Commun Heat Mass Transf. 2012;39:978.CrossRefGoogle Scholar
  33. 33.
    Sundar LS, Singh MK, Sousa ACM. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf. 2013;44:7.CrossRefGoogle Scholar
  34. 34.
    Kandelousi MS. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A. 2014;378:3331.CrossRefGoogle Scholar
  35. 35.
    Esfe MH, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci. 2014;52:68.CrossRefGoogle Scholar
  36. 36.
    Ma Y, Mohebbi R, Rashidi MM, et al. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30:032001.CrossRefGoogle Scholar
  37. 37.
    Izadi M, Mohebbi R, Karimi D, et al. Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.CrossRefGoogle Scholar
  38. 38.
    Karimipour A, Esfe MH, Safaei MR, et al. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A. 2014;402:150.CrossRefGoogle Scholar
  39. 39.
    Kefayati GHR, Tang H. MHD mixed convection of viscoplastic fluids in different aspect ratios of a lid-driven cavity using LBM. Int J Heat Mass Transf. 2018;124:344.CrossRefGoogle Scholar
  40. 40.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z, Sheremet MA. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2019;130:123.CrossRefGoogle Scholar
  41. 41.
    Sheikholeslami M. Numerical investigation for CuO–H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2017;249:739–46.CrossRefGoogle Scholar
  42. 42.
    Nazari M, Mohebbi R, Kayhani MH. Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: lattice Boltzmann simulation. J NonNewtonian Fluid Mech. 2014;204:38.CrossRefGoogle Scholar
  43. 43.
    Mohebbi R, Nazari M, Kayhani MH. Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. J Appl Mech Tech Phys. 2016;57:55.CrossRefGoogle Scholar
  44. 44.
    Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954;94:511.CrossRefGoogle Scholar
  45. 45.
    Wei Y, Dou HS, Wang Z. Simulations of natural convection heat transfer in an enclosure at different Rayleigh number using lattice Boltzmann method. Comput Fluids. 2016;124:30.CrossRefGoogle Scholar
  46. 46.
    Qian YH, d’Humières D, Lallemand P. Lattice BGK models for Navier–Stokes equation. Europhys Lett. 1992;17:479.CrossRefGoogle Scholar
  47. 47.
    Yan YY, Zu YQ. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach. Int J Heat Mass Transf. 2008;51:2519.CrossRefGoogle Scholar
  48. 48.
    Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9:1591.CrossRefGoogle Scholar
  49. 49.
    Inamuro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann simulations. Phys Fluids. 1995;7:2928.CrossRefGoogle Scholar
  50. 50.
    Mohamad AA. Applied lattice Boltzmann method for transport phenomena, momentum, heat and mass transfer. Can J Chem Eng. 2007;85(6):946.Google Scholar
  51. 51.
    Sheikholeslami M, Ashorynejad HR, Rana P. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J Mol Liq. 2016;214:86.CrossRefGoogle Scholar
  52. 52.
    Koo J, Kleinstreuer C. Viscous dissipation effects in microtubes and microchannels. Int J Heat Mass Transf. 2004;47:3159.CrossRefGoogle Scholar
  53. 53.
    Koo J. Computational nanofluid flow and heat transfer analyses applied to microsystems. Ph.D. thesis, North Carolina State University, 2004 (unpublished).Google Scholar
  54. 54.
    Prasher RS, Bhattacharya P, Phelan PE. Thermal conductivity of nano scale colloidal solution. Phys Rev Lett. 2005;94:025901.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jang SP, Choi SUS. The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316.CrossRefGoogle Scholar
  56. 56.
    Li J. Computational analysis of nanofluid flow in micro channels with applications to micro-heat sinks and bio-MEMS. Ph.D. thesis, North Carolina State University, 2008 (unpublished).Google Scholar
  57. 57.
    Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf. 2005;48:2652.CrossRefGoogle Scholar
  58. 58.
    Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203.CrossRefGoogle Scholar
  59. 59.
    Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9–10):2002–18.CrossRefGoogle Scholar
  60. 60.
    Iwatsu R, Hyun JM, Kuwahara K. Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf. 1993;36(6):1601–8.CrossRefGoogle Scholar
  61. 61.
    Calcagni B, Marsili F, Paroncini M. Natural convective heat transfer in square enclosures heated from below. Appl Therm Eng. 2005;25:2522.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Yuan Ma
    • 1
    • 2
  • Rasul Mohebbi
    • 3
    Email author
  • M. M. Rashidi
    • 1
    • 2
  • Zhigang Yang
    • 1
    • 2
    • 4
  1. 1.Shanghai Automotive Wind Tunnel CenterTongji UniversityShanghaiChina
  2. 2.Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management SystemsShanghaiChina
  3. 3.School of EngineeringDamghan UniversityDamghanIran
  4. 4.Beijing Aeronautical Science and Technology Research InstituteBeijingChina

Personalised recommendations