Advertisement

Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments

  • Kamel BoudraaEmail author
  • Tewfik Bouchaour
  • Ulrich Maschke
Article
  • 6 Downloads

Abstract

In this work, we verified the synthesis of a novel sequential interpenetrating polymer network, composed of poly(2-hexyl-ethylacrylate) and poly(n-butyl acrylate) named PHEA and PBuA, respectively, and we studied the physical properties by means of thermogravimetric analysis and differential scanning calorimetry techniques. An increase in the thermal stability is found with the increase in the density of the polymer network, and the amount of the absorbed monomer by the network has a great influence on its behavior and glass transition temperature. We supplement this job by applying molecular dynamics simulation methods (free volume, radial distribution function) to investigate the properties of these polymer networks and effects of composition ratios and temperature by introducing a new comprehensive and reproducible atomistic model for the generation and property evaluation of interpenetrating polymer networks. The simulation presented from the discontinuity in the different plots versus temperature of the specific volume or radial distribution function, demonstrates that the glass transition temperature (Tg) values were in good agreement with experimental values.

Keywords

Interpenetrating polymer network Thermal analysis Atomistic simulation Glass transition 

Notes

Acknowledgements

The authors thank the members of CULGI® for their continued support. This work was granted access to the HPC resources of UCI-UABT ‘Unité de Calcul Intensif’ of the University Abou bekr Belkaïd of Tlemcen financed by the DGRSDT ‘Direction Générale de la recherche Scientifique et du Développement Technologique.’

References

  1. 1.
    Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006.  https://doi.org/10.1016/j.polymer.2006.06.025.CrossRefGoogle Scholar
  2. 2.
    Cao G. Atomistic studies of mechanical properties of graphene. Polymers. 2014.  https://doi.org/10.3390/polym6092404.CrossRefGoogle Scholar
  3. 3.
    Fredrickson GH. The theory of polymer dynamics. Curr Opin Solid State Mater Sci. 1996.  https://doi.org/10.1016/S1359-0286(96)80106-9.CrossRefGoogle Scholar
  4. 4.
    Nieminen RM. From atomistic simulation towards multiscale modelling of materials. J Phys: Condens Matter. 2002.  https://doi.org/10.1088/0953-8984/14/11/306.CrossRefGoogle Scholar
  5. 5.
    Vvedensky DD. Multiscale modelling of nanostructures. J Phys: Condens Matter. 2004.  https://doi.org/10.1088/0953-8984/16/50/r01.CrossRefGoogle Scholar
  6. 6.
    Holzapfel GA, Ogden RW. Constitutive modelling of arteries. In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010. http://doi.org/10.1098/rspa.2010.0058.CrossRefGoogle Scholar
  7. 7.
    Al Salhi MS, Alam J, Dass LA, Raja M. Recent advances in conjugated polymers for light emitting devices. Int J Mol Sci. 2011.  https://doi.org/10.3390/ijms12032036.CrossRefGoogle Scholar
  8. 8.
    Chodera JD, Noé F. Markov state models of biomolecular conformational dynamics. Curr Opin Struct Biol. 2014.  https://doi.org/10.1016/j.sbi.2014.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016.  https://doi.org/10.1016/j.xphs.2015.10.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Gooneie A, Schuschnigg S, Holzer C. A review of multiscale computational methods in polymeric materials. Polymers. 2017.  https://doi.org/10.3390/polym9010016.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Valverde JR. Molecular modelling: principles and applications. Brief Bioinform. 2006.  https://doi.org/10.1093/bib/2.2.199.CrossRefGoogle Scholar
  12. 12.
    Rapaport DC, Blumberg RL, McKay SR, Christian W. The art of molecular dynamics simulation. Comput Phys. 2013.  https://doi.org/10.1063/1.4822471.CrossRefGoogle Scholar
  13. 13.
    Paquet E, Viktor HL. Computational methods for Ab initio molecular dynamics. Adv Chem. 2018.  https://doi.org/10.1155/2018/9839641.CrossRefGoogle Scholar
  14. 14.
    Trewin A. Molecular modelling for beginners. Chromatographia. 2010.  https://doi.org/10.1365/s10337-009-1412-5.CrossRefGoogle Scholar
  15. 15.
    Jahangirian M, Eldabi T, Naseer A, Stergioulas LK, Young T. Simulation in manufacturing and business: a review. Eur J Oper Res. 2010.  https://doi.org/10.1016/j.ejor.2009.06.004.CrossRefGoogle Scholar
  16. 16.
    Fredrickson GH. The theory of polymer dynamics. Curr Opin Solid State Mater Sci. 1996.  https://doi.org/10.1016/S1359-0286(96)80106-9.CrossRefGoogle Scholar
  17. 17.
    Cheng X, Ivanov I. Molecular dynamics. Methods Mol Biol. 2012.  https://doi.org/10.1007/978-1-62703-050-2_11.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li Y, Abberton BC, Kröger M, Liu WK. Challenges in multiscale modeling of polymer dynamics. Polymers. 2013.  https://doi.org/10.3390/polym5020751.CrossRefGoogle Scholar
  19. 19.
    Heinecke A, Eckhardt W, Horsch M, Bungartz HJ. Molecular dynamics simulation. In: Supercomputing for molecular dynamics simulations. SpringerBriefs in Computer Science. Springer, Cham 2015; http://doi.org/10.1007/978-3-319-17148-7_2.Google Scholar
  20. 20.
    Raabe G. Molecular dynamics simulations. In: Molecular simulation studies on thermophysical properties. Molecular modeling and simulation (applications and perspectives). Springer, Singapore 2017;  https://doi.org/10.1007/978-981-10-3545-6_4.CrossRefGoogle Scholar
  21. 21.
    Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006.  https://doi.org/10.1016/j.progpolymsci.2006.03.002.CrossRefGoogle Scholar
  22. 22.
    Utracki LA, Wilkie CA. Polymer blends handbook. 2014; http://doi.org/10.1007/978-94-007-6064-6.
  23. 23.
    Manias E, Utracki LA. Thermodynamics of polymer blends. In: Polymer blends handbook. 2014; http://doi.org/10.1007/978-94-007-6064-6_4.Google Scholar
  24. 24.
    Sperling LH, Hu R (2014) Interpenetrating polymer networks. In: Polymer blends handbook. http://doi.org/10.1007/978-94-007-6064-6_8.Google Scholar
  25. 25.
    Xu K, Chen R, Wang C, et al. Organomontmorillonite-modified soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2016;126:1253.  https://doi.org/10.1007/s10973-016-5795-x.CrossRefGoogle Scholar
  26. 26.
    Schiraldi A, Fessas D. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08166-z.CrossRefGoogle Scholar
  27. 27.
    Khoshooei MA, Fazlollahi F, Maham Y, et al. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08022-0.CrossRefGoogle Scholar
  28. 28.
    Łagowska B, Wacławska I, Sułowska J, et al. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08446-8.CrossRefGoogle Scholar
  29. 29.
    Lipatov YS, Alekseeva TT. Phase-separated interpenetrating polymer networks. In: Phase-separated interpenetrating polymer networks. Advances in polymer science, vol 208. Springer, Berlin, 2007; http://doi.org/10.1007/12_2007_116.
  30. 30.
    Sperling LH. Interpenetrating polymer networks: an overview 2009; http://doi.org/10.1021/ba-1994-0239.ch001.CrossRefGoogle Scholar
  31. 31.
    Shivashankar M, Mandal BK. A review on interpenetrating polymer network. Int J Pharm Pharm Sci. 2012;4(Suppl 5):1–7.Google Scholar
  32. 32.
    Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013.  https://doi.org/10.1016/j.addr.2013.04.002.CrossRefPubMedGoogle Scholar
  33. 33.
    Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014.  https://doi.org/10.1016/j.cej.2014.01.065.CrossRefGoogle Scholar
  34. 34.
    Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv. 2014.  https://doi.org/10.1155/2014/583612.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ligon-Auer SC, Schwentenwein M, Gorsche C, Stampfl J, Liska R. Toughening of photo-curable polymer networks: a review. Polym Chem. 2016.  https://doi.org/10.1039/c5py01631b.CrossRefGoogle Scholar
  36. 36.
    Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun. 2018.  https://doi.org/10.1038/s41467-018-05222-4.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rao S, Devi SNS, Johns A, Kalkornsurapranee E, Sham Aan M, Johns J. Mechanical and thermal properties of carbon black reinforced natural rubber/polyvinyl alcohol fully-interpenetrating polymer networks. J Vinyl Add Technol. 2018;24:E21–9.  https://doi.org/10.1002/vnl.21560.CrossRefGoogle Scholar
  38. 38.
    Kumar P, Choonara YE, du Toit LC, Pillay V. Advances in patented interpenetrating polymeric networks for biomedical applications. Pharm Patent Anal. 2018;7(3):99–101.  https://doi.org/10.4155/ppa-2018-0007.CrossRefGoogle Scholar
  39. 39.
    Sadakbayeva Z, Dušková-Smrčková M, Šturcová A, Pfleger J, Dušek K. Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior. Eur Polym J. 2018;101:304–13.  https://doi.org/10.1016/J.EURPOLYMJ.2018.02.035.CrossRefGoogle Scholar
  40. 40.
    Sen S, Patil S, Argyropoulos DS. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 2015;17(11):4862–87.  https://doi.org/10.1039/C5GC01066G.CrossRefGoogle Scholar
  41. 41.
    Liu Z, Zhang Y, Hu K, Xiao Y, Wang J, Zhou C, Lei J. Preparation and properties of polyethylene glycol based semi-interpenetrating polymer network as novel form-stable phase change materials for thermal energy storage. Energy Build. 2016;127:327–36.  https://doi.org/10.1016/J.ENBUILD.2016.06.009.CrossRefGoogle Scholar
  42. 42.
    Zanjanijam AR, Hakim S, Azizi H. Rheological, mechanical and thermal properties of the PA/PVB blends and their nanocomposites: structure-property relationships. Polym Test. 2018;66:48–63.  https://doi.org/10.1016/J.POLYMERTESTING.2018.01.006.CrossRefGoogle Scholar
  43. 43.
    Somsunan R, Mainoiy N. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08631-9.CrossRefGoogle Scholar
  44. 44.
    Baatti A, Erchiqui F, Godard F, et al. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08497-x.CrossRefGoogle Scholar
  45. 45.
    Wong WSY, Stachurski ZH, Nisbet DR, Tricoli A. Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks. ACS Appl Mater Interfaces. 2016;8(21):13615–23.  https://doi.org/10.1021/acsami.6b03414.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhong C, Ke D, Wang L, Lu Y, Wang L. Bioactive interpenetrating polymer networks for improving the electrode/neural-tissue interface. Electrochem Commun. 2017;79:59–62.  https://doi.org/10.1016/J.ELECOM.2017.04.015.CrossRefGoogle Scholar
  47. 47.
    Park SR, Kang JH, Ahn DA, Suh MC. A cross-linkable hole transport material having improved mobility through a semi-interpenetrating polymer network approach for solution-processed green PHOLEDs. J Mater Chem C. 2018;6(29):7750–8.  https://doi.org/10.1039/C8TC01435C.CrossRefGoogle Scholar
  48. 48.
    Ren D, Chen L, Yuan Y, Li K, Xu M, Liu X. Designing and preparation of fiber-reinforced composites with enhanced interface adhesion. Polymers. 2018;10:1128.  https://doi.org/10.3390/polym10101128.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Haloi DJ, Koiry BP, Mandal P, et al. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization. J Chem Sci. 2013;125:791–7.  https://doi.org/10.1007/s12039-013-0438-2.CrossRefGoogle Scholar
  50. 50.
    Czech Z, Kowalczyk A, Kabatc J, Świderska J. Thermal stability of poly(2-ethylhexyl acrylates) used as plasticizers for medical application. Polym Bull. 2013;70:1911–8.  https://doi.org/10.1007/s00289-012-0887-7.CrossRefGoogle Scholar
  51. 51.
    Haloi DJ, Ata S, Singha NK, Jehnichen D, Voit P. Acrylic AB and ABA block copolymers based on poly(2-ethylhexyl acrylate) (PEHA) and poly(methyl methacrylate) (PMMA) via ATRP. Appl Mater Interfaces. 2012;4:4200–7.  https://doi.org/10.1021/am300915j.CrossRefGoogle Scholar
  52. 52.
    Wang G. Synthesis of poly(n-butyl acrylate) homopolymers by activators generated by electron transfer (AGET) ATRP using FeCl3 6H2O/succinic acid catalyst. Iran Polym J. 2011;20:931–8.Google Scholar
  53. 53.
    Meng B, Deng JJ, Liu Q, Wu Z, Yang W. Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur Polym J. 2012;48:127–35.  https://doi.org/10.1016/j.eurpolymj.2011.10.009.CrossRefGoogle Scholar
  54. 54.
    Derouiche Y, Koynov K, Dubois F, Douali R, Legrand C, Maschke U. Optical, electro-optical, and dielectric properties of acrylic tripropyleneglycol based polymer network systems including LCs. Mol Cryst Liq Cryst. 2012;561:124–35.  https://doi.org/10.1080/15421406.2012.687149.CrossRefGoogle Scholar
  55. 55.
    Bouchikhi N, Semdani F, Alachaher Bedjaoui L, Maschke U. Elaboration of side-chain liquid-crystalline elastomers and study of their swelling behavior in anisotropic solvents. Mol Cryst Liq Cryst. 2012;560:159–69.  https://doi.org/10.1080/15421406.2012.663196.CrossRefGoogle Scholar
  56. 56.
    Culgi BV, The Netherlands, 12.0.Google Scholar
  57. 57.
    Humphrey W, Dalke A, Schulten K. VMD-Visual molecular dynamics. J Mol Graphics. 1996;14:33–8.CrossRefGoogle Scholar
  58. 58.
    Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K. Using VMD: an introductory tutorial. Curr Protoc Bioinform. 2008.  https://doi.org/10.1002/0471250953.bi0507s24.CrossRefGoogle Scholar
  59. 59.
    Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–909.  https://doi.org/10.1021/j100389a010.CrossRefGoogle Scholar
  60. 60.
    Fraaije JHG et al. Culgi manual 12.0.1. Culgi, Leiden, Netherlands.Google Scholar
  61. 61.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–90.  https://doi.org/10.1063/1.448118.CrossRefGoogle Scholar
  62. 62.
    Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths. J Chem Phys. 2008;128(13):134106.  https://doi.org/10.1063/1.2841941.CrossRefPubMedGoogle Scholar
  63. 63.
    Metatla N, Soldera A. Computation of densities, bulk moduli and glass transition temperatures of vinylic polymers from atomistic simulation. Mol Simul. 2006.  https://doi.org/10.1080/08927020601059901.CrossRefGoogle Scholar
  64. 64.
    Soldera A, Metatla N. Glass transition of polymers: atomistic simulation versus experiments. Phys Rev E. 2006;74(6):061803.  https://doi.org/10.1103/PhysRevE.74.061803.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Biology Department, Faculty of SciencesUniversity of SaidaSaidaAlgeria
  2. 2.Laboratoire de Recherche sur les Macromolécules, Département de Physique, Faculté des SciencesUniversité Abou Bakr BelkaïdTlemcenAlgeria
  3. 3.Unité de Matériaux et de Transformations UMET (UMR CNRS N°8207), Bâtiment C6Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations