Physicochemical and photocatalytic properties of tin dioxide supported onto silica gel

  • S. KhalameidaEmail author
  • V. Sydorchuk
  • S. Levytska
  • N. Shcherban


The samples containing 1–10% tin dioxide supported onto silica gel have been synthesized via precipitation or thermolysis of tin tetrachloride. The prepared samples have been characterized using DTA–TG, XRD, Raman and UV–Vis spectroscopy, TPD of ammonia, and low-temperature nitrogen adsorption–desorption. The supported samples have been tested as photocatalysts in the process of rhodamine B degradation under visible irradiation. It has been established that the deposited phase is uniformly dispersed on the surface. Redshift of band gap is observed for the supported samples. Unlike a bulk SnO2, the supported samples exhibit photocatalytic activity under visible irradiation.


Tin dioxide Silica gel Photocatalysis DTA–TG UV–Vis spectroscopy 



  1. 1.
    Batzill M, Diebold U. The surface and materials science of tin oxide. Progress Surf Sci. 2005;79:47–154.CrossRefGoogle Scholar
  2. 2.
    Samsonenko M, Zakutevskyy O, Khalameida S, Charmas B, Skubiszewska-Ziȩba J. Influence of mechanochemical and microwave modification on ion-exchange properties of tin dioxide with respect to uranyl ions. Adsorption. 2019;25:451–7.CrossRefGoogle Scholar
  3. 3.
    Wu J, Zeng D, Tian S, Xu K, Li D, Xie C. Competitive influence of surface area and mesopore size on gas-sensing properties of SnO2 hollow fibers. Mater Sci. 2015;50:7725–34.CrossRefGoogle Scholar
  4. 4.
    Khalameida S, Samsonenko M, Sydorchuk V, Starchevskyy V, Zakutevskyy O, Khyzhun O. Theor Exp Chem. 2017;53:40–5.CrossRefGoogle Scholar
  5. 5.
    Khalameida S, Samsonenko M, Skubiszewska-Ziȩba J, Zakutevskyy O. Dyes catalytic degradation using modified tin(IV) oxide and hydroxide powders. Adsorpt Sci Technol. 2017;35:853–65.CrossRefGoogle Scholar
  6. 6.
    Sangami G, Dharmaraj N. UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;97:847–52.CrossRefGoogle Scholar
  7. 7.
    Hoffmann MR, Martin ST, Choi W, Bahneman DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95:69–96.CrossRefGoogle Scholar
  8. 8.
    Xu Y, Zheng W, Liu W. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. J Photochem Photobiol A Chem. 1999;122:57–60.CrossRefGoogle Scholar
  9. 9.
    Ding Z, Hu X, Lu GQ, Yue P-L, Greenfield PF. Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir. 2000;16:6216–22.CrossRefGoogle Scholar
  10. 10.
    Van Grieken R, Aguado J, López-Muñoz MJ, Marugán J. Synthesis of size-controlled silica-supported TiO2 photocatalysts. J Photochem Photobiol A Chem. 2002;148:315–22.CrossRefGoogle Scholar
  11. 11.
    Sidorchuk V, Tertykh V, Klimenko V, Ragulya A. Formation and some properties of barium titanate embedded into porous matrices. J Therm Anal Calorim. 2010;101:729–35.CrossRefGoogle Scholar
  12. 12.
    Trach Y, Sydorchuk V, Makota O, Khalameida S, Leboda R, Skubiszewska-Zięba J, Zazhigalov V. Synthesis, physical–chemical, and catalytic properties of mixed compositions Ag/H3PMo12O40/SiO2. J Therm Anal Calorim. 2011;107:453–61.CrossRefGoogle Scholar
  13. 13.
    Khalameida S, Sydorchuk V, Skubiszewska-Zięba J, Leboda R, Zazhigalov V. Glass Phys Chem. 2014;40:8–16.CrossRefGoogle Scholar
  14. 14.
    Wu Y, Wang H, Cao M, Zhang Y, Cao F, Zheng X, Hu J, Dong J, Xiao Z. Animal bone supported SnO2 as recyclable photocatalyst for degradation of rhodamine B dye. J Nanosci Nanotechnol. 2015;15:6495–502.PubMedCrossRefGoogle Scholar
  15. 15.
    Srinivasan NR, Majumdar P, Eswar NKR, Bandyopadhyaya R. Photocatalysis by morphologically tailored mesoporous silica (SBA-15) embedded with SnO2 nanoparticles: experiments and model. Appl Catal A. 2015;498:107–16.CrossRefGoogle Scholar
  16. 16.
    Dippong T, Levei E, Cadar O, Goga F, Toloman D, Borodi G. Thermal behavior of Ni, Co and Fe succinates embedded in silica matrix. J Therm Anal Calorim. 2019;136:1587–95.CrossRefGoogle Scholar
  17. 17.
    Ferrini P, Dijkmans J, De Clercq R, Van de Vyver S, Dusselier M, Jacobs PA, Sels BF. Lewis acid catalysis on single site Sn centers incorporated into silica hosts. Coord Chem Rev. 2017;343:220–55.CrossRefGoogle Scholar
  18. 18.
    Hammond C, Conrad S, Hermans I. Simple and scalable preparation of highly active lewis acidic Sn-b. Angew Chem Int Ed. 2012;51:11736–9.CrossRefGoogle Scholar
  19. 19.
    Varvarin A, Levytska S, Brei V. Conversion of ethyllactate into lactide over acid SnO2/SiO2 catalyst. Kataliz i neftechimia (Russ). 2018;27:19–23.Google Scholar
  20. 20.
    Carreño NLV, Nunes MR, Raubach CW, Granada RL, Krolow MZ, Orlandi MO, Fajardo HV, Probst LFD. SnO2 nanoparticles functionalized in amorphous silica and glass. Powder Technol. 2009;195:91–5.CrossRefGoogle Scholar
  21. 21.
    Skoda D, Styskalik A, Moravec Z, Bezdicka P, Bursik J, Mutine PH, Pinkas J. Mesoporous SnO2–SiO2 and Sn–silica–carbon nanocomposites by novel non-hydrolytic templated sol–gel synthesis. RSC Adv. 2016;6:68739–47.CrossRefGoogle Scholar
  22. 22.
    Cai J, Li Z, Yao S, Meng H, Shen PK, Wei Z. Close-packed SnO2 nanocrystals anchored on amorphous silica as a stable anode material for lithium–ion battery. Electrochim Acta. 2012;74:182–8.CrossRefGoogle Scholar
  23. 23.
    Skubiszewska-Zięba J, Khalameida S, Sydorchuk V. Comparison of surface properties of silica xero- and hydrogels hydrothermally modified using mechanochemical, microwave and classical methods. Colloids Surf A. 2017;504:139–53.CrossRefGoogle Scholar
  24. 24.
    Leboda R, Mendyk E, Tertykh VA. Effect of the hydrothermal treatment method in an autoclave on the silica gel porous structure. Mater Chem Phys. 1995;42:7–11.CrossRefGoogle Scholar
  25. 25.
    Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts. Catal Today. 1998;41:207–19.CrossRefGoogle Scholar
  26. 26.
    Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J. 2009;151:10–8.CrossRefGoogle Scholar
  27. 27.
    Yi X, Hu J, Sun M, Man X, Zhang Y, Liu S. Thermal stability and decomposition behaviors of some hydrous transition metal chlorides. J Therm Anal Calorim. 2019. Scholar
  28. 28.
    Catauro M, Naviglio D, Risoluti R, Ciprioti SV. Sol–gel synthesis and thermal behavior of bioactive ferrous citrate–silica hybrid materials. J Therm Anal Calorim. 2018;133:1085–92.CrossRefGoogle Scholar
  29. 29.
    Dippong T, Levei EA, Cadar O, Goga F, Borodi G, Barbu-Tudoran L. Thermal behavior of CoxFe3−xO4/SiO2 nanocomposites obtained by a modified sol–gel method. J Therm Anal Calorim. 2017;128:39–52.CrossRefGoogle Scholar
  30. 30.
    Olszak-Humienik M. On the thermal stability of some ammonium salts. Thermochim Acta. 2001;378:107–12.CrossRefGoogle Scholar
  31. 31.
    Argyle MD, Bartholomew CH. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts. 2015;5:145–269.CrossRefGoogle Scholar
  32. 32.
    Ştefănescu M, Muntean C, Berei E, Ştefănescu O. Preparation and characterization of CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites obtained from carboxylate complex combinations. J Therm Anal Calorim. 2019. Scholar
  33. 33.
    Vladut CM, Mihaiu S, Szilágyi IM, Kovács TN, Atkinson I, Mocioiu OC, Petrescu S, Zaharescu M. Thermal investigations of the Sn–Zn–O gels obtained by sol–gel method. J Therm Anal Calorim. 2019;136:461–70.CrossRefGoogle Scholar
  34. 34.
    Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water–gas shift reaction. Angew Chem Int Ed. 2008;47:2884–7.CrossRefGoogle Scholar
  35. 35.
    Skwarek E, Khalameida S, Janusz W, Sydorchuk V, Konovalova N, Zazhigalov V, Skubiszewska-Zięba J, Leboda R. Influence of mechanochemical activation on structure and some properties of mixed vanadium–molybdenum oxides. J Therm Anal Calorim. 2011;106:881–94.CrossRefGoogle Scholar
  36. 36.
    Batzill M. Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ Sci. 2011;4:3275–86.CrossRefGoogle Scholar
  37. 37.
    Khalameida S, Sydorchuk V, Leboda R, Skubiszewska-Zięba J, Zazhigalov V. Physical-chemical transformations in the system V2O5/(NH4)2Mo2O7 under hydrothermal conditions. Cent Eur J Chem. 2014;12:140–52.CrossRefGoogle Scholar
  38. 38.
    Dieguez A, Romano-Rodrıguez A, Vila A, Morante JR. The complete Raman spectrum of nanometric SnO2 particles. J Appl Phys. 2001;90:1550–7.CrossRefGoogle Scholar
  39. 39.
    Yu KN, Xiong Y, Liu Y, Xiong C. Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys Rev B Condens Matter. 1997;55:2666–71.CrossRefGoogle Scholar
  40. 40.
    Volovšek V, Furić K, Bistričić L, Leskovac M. Micro Raman spectroscopy of silica nanoparticles treated with aminopropylsilanetriol. Macromol Symp. 2008;265:178–82. Scholar
  41. 41.
    Sydorchuk V, Khalameida S, Zazhigalov V, Skubiszewska-Zięba J, Leboda R, Wieczorek-Ciurowa K. Influence of mechanochemical activation in various media on structure of porous and non-porous silicas. Appl Surf Sci. 2010;257:446–50.CrossRefGoogle Scholar
  42. 42.
    Srinivasan NR, Bandyopadhyaya R. SnxTi1−xO2 solid-solution-nanoparticle embedded mesoporous silica (SBA-15) hybrid as an engineered photocatalyst with enhanced activity. Faraday Discuss. 2016;186:353–70.PubMedCrossRefGoogle Scholar
  43. 43.
    del Castillo J, Yanes AC, Méndez-Ramos J, Rodríguez VD. Luminescence of nanostructured SnO2–SiO2 glass-ceramics prepared by sol–gel method. J Nanosci Nanotechnol. 2008;8:2143–6.CrossRefGoogle Scholar
  44. 44.
    van Grieken R, Martos C, Sánchez-Sánchez M, Serrano DP, Melero JA, Iglesias J, Cubero JG. Synthesis of Sn–silicalite from hydrothermal conversion of SiO2–SnO2 xerogels. Microporous Mesoporous Mater. 2009;119:176–85.CrossRefGoogle Scholar
  45. 45.
    Wu T, Liu G, Zhao J, Hidaka H, Serpone N. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B. 1998;102:5845–51.CrossRefGoogle Scholar
  46. 46.
    Davraz M, Gunduz L. Engineering properties of amorphous silica as a new natural pozzolan for use in concrete. Cem Concr Res. 2005;35:1251–61.CrossRefGoogle Scholar
  47. 47.
    Wood GC, Hodgkiess T. The hardness of oxides at ambient temperatures. Mater Corros. 1972;23:766–73.CrossRefGoogle Scholar
  48. 48.
    Zazhigalov V, Sachuk O, Diyuk O, Bacherikova I, Posudievsky O, Shcherban N. Mechanochemical synthesis of nanosized compounds in CeO2–MoO3 system. In: Proceedings of 2018 IEEE 8th international conference “nanomaterials: applications & properties”. 01SPN35-1-01SPN35-6.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • S. Khalameida
    • 1
    Email author
  • V. Sydorchuk
    • 1
  • S. Levytska
    • 1
  • N. Shcherban
    • 2
  1. 1.Institute for Sorption and Problems of EndoecologyNAS of UkraineKievUkraine
  2. 2.L.V. Pysarzhevsky Institute of Physical ChemistryNAS of UkraineKievUkraine

Personalised recommendations