Enhanced catalytic performance on the thermal decomposition of TKX-50 by Fe3O4 nanoparticles highly dispersed on rGO

  • Jiankan Zhang
  • Fengqi ZhaoEmail author
  • Yanjing Yang
  • Qilong Yan
  • Ming Zhang
  • Wenzhe Ma


Fe3O4/reduced graphene oxide (Fe3O4/rGO) nanocomposite has been successfully fabricated using a modified interface solvothermal method and characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the preparation procedure, graphene oxide was reduced and ultrafine Fe3O4 nanoparticles (NPs) were uniformly loaded on reduced graphene oxide (rGO) carrier. Scanning electron microscope, transmission electron microscope images and Brunauer–Emmett–Teller specific surface area revealed that the aggregation of Fe3O4 NPs was greatly reduced by introducing rGO as a substrate. The average size of the Fe3O4 NPs anchored on the graphene sheets was 100 nm, which is much smaller than 1-μm bare Fe3O4. The DSC results showed that Fe3O4/rGO nanocomposite reduces the first decomposition temperature of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) by 44.9 °C and decreases the apparent activation energy of TKX-50 by 26.2 kJ mol−1, which exhibits higher catalytic performance than its individual components and their physical mixture (hybrid). Hence, Fe3O4/rGO nanocomposite can be a promising additive for insensitive solid propellants based on TKX-50.


Fe3O4/rGO nanocomposite TKX-50 Thermal decomposition Catalytic activity Solvothermal method 



The financial assistance from the National Natural Science Foundation of China (21173163, 21473130 and 21503163) is greatly appreciated.


  1. 1.
    Venugopalan S. Demystifying explosives-concepts in high energy materials. Amsterdam: Elsevier; 2015.Google Scholar
  2. 2.
    Song ZW, Yan QL, Li XJ, Qi XF, Liu M. Crystal transition of ε-CL-20 in different solvent. Chin J Energ Mater. 2010;18:648–53.Google Scholar
  3. 3.
    Golovina NI, Utenyshev AN, Bozhenko KV, Chukanov NV, Zakharov VV, Korsounskii BL. The energy parameters of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane polymorphs and their phase transitions. Russ J Phys Chem A. 2009;83:1153–9.CrossRefGoogle Scholar
  4. 4.
    Fischer N, Fischer D, Klapoetke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.CrossRefGoogle Scholar
  5. 5.
    Sinditskii VP, Filatov SA, Kolesov VI, Kapranov KO, Asachenko AF, Nechaev MS, Lunin VV, Shishov NI. Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.CrossRefGoogle Scholar
  6. 6.
    Bi FQ, Fu XL, Shao ZB, Fan XZ, Li JZ, Yu HJ. Calculation of energy characteristics of high energy monopropellant TKX-50. Chem Propell Polym Mater. 2013;5:70–3.Google Scholar
  7. 7.
    Wang XP, Luo YJ, Guo K, Lu Y. Energy characteristics computation of propellant containing 3,3′-Dinitro-4,4′-oxazafurazan. Chin J Energ Mater. 2009;17:79–82.Google Scholar
  8. 8.
    Klapötke TM, Witkowski TG, Wilk Z, Hadzik J. Determination of the initiating capability of detonators containing TKX-50, MAD-X1, PETNC, DAAF, RDX, HMX or PETN as a base charge, by underwater explosion test. Prop Explos Pyrotech. 2016;41:92–7.CrossRefGoogle Scholar
  9. 9.
    Lurnan JR, Wehrman B, Kuo KK, Yetter RA, Masoud NM, Manning TG, Harris LE, Bruck HA. Development and characterization of high performance solid propellants containing nano-sized energetic ingredients. Proc Combust Inst. 2007;31:2089–96.CrossRefGoogle Scholar
  10. 10.
    Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA, Smirnov SP. Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta. 2009;496:1–12.CrossRefGoogle Scholar
  11. 11.
    Korobeinichev OP, Paletskii AA, Volkov EN. Flame structure and combustion chemistry of energetic materials. Russ J Phys Chem B. 2008;2:206–28.CrossRefGoogle Scholar
  12. 12.
    Xie MZ, Heng SY, Liu ZR, Wang H, Wang XH, Zhao FQ. Research on the catalytic thermal decomposition of RDX-CMDB propellants by TG-DSC-IR-MS. J Solid Rock Tech. 2009;32:539–42.Google Scholar
  13. 13.
    Huang HF, Shi YM, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121:705–9.CrossRefGoogle Scholar
  14. 14.
    An Q, Liu WG, Goddard WA, Cheng T, Zybin SV, Xiao H. Initial steps of thermal decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate crystals from quantum mechanics. J Phys Chem C. 2014;118:27175–81.CrossRefGoogle Scholar
  15. 15.
    Wang JF, Chen SS, Jin SH, Shi R, Yu ZF, Su Q, Ma X, Zhang CY, Shu QH. The primary decomposition product of TKX-50 under adiabatic condition and its thermal decomposition. J Therm Anal Calorim. 2018;134:2049–55.CrossRefGoogle Scholar
  16. 16.
    Wang JF, Chen SS, Jin SH, Shu QH, Zhang XP, Shi R. Thermal behavior, compatibility study and safety assessment of diammonium 5,50-bistetrazole-1,10-diolate (ABTOX). J Therm Anal Calorim. 2019. Scholar
  17. 17.
    Qin H, Zha M, Ma Z, Zhao F, Xu S, Xu H. Controllable fabrication of CuO/ammonium perchlorate (AP) nanocomposites through ceramic membrane anti-solvent recrystallization. Prop Explos Pyrotech. 2014;39:694–700.CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Wei T, Xu KZ, Ren Z, Xiao L, Song J, Zhao FQ. Catalytic decomposition action of hollow CuFe2O4 nanospheres on RDX and FOX-7. RSC Adv. 2015;5:75630–5.CrossRefGoogle Scholar
  19. 19.
    Gao HX, Zhao FQ, Luo Y, Hao HX, Pei Q, Li SW. Synthesis of nanocomposite PbO·SnO2 and its effect on the combustion properties of DB and RDX-CMDB propellants. Chin J Expl Propell. 2012;35:15–8.Google Scholar
  20. 20.
    Zhang Y, Xiao L, Xu KZ, Song J, Zhao FQ. Graphene oxide-enveloped Bi2WO6 composites as a highly efficient catalyst for the thermal decomposition of cyclotrimethylene -trinitramine. RSC Adv. 2016;6:42428–34.CrossRefGoogle Scholar
  21. 21.
    Yan W, Cao X, Ke K, Tian J, Jin C, Yang R. One-pot synthesis of monodispersed porous CoFe2O4 nanospheres on graphene as an efficient electrocatalyst for oxygen reduction and evolution reactions. RSC Adv. 2016;6:307–13.CrossRefGoogle Scholar
  22. 22.
    Zu YQ, Zhang Y, Xu KZ, Zhao FQ. Graphene oxide-MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX. Rsc Adv. 2016;6:31046–52.CrossRefGoogle Scholar
  23. 23.
    Eigler S, Hirsch A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew Chem Int Edit. 2014;53:7720–38.CrossRefGoogle Scholar
  24. 24.
    Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41:666–86.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Salamon J, Sathishkumar Y, Ramachandran K, Lee YS, Yoo DJ, Kim AR, Kumar GG. One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens Bioelectron. 2015;64:269–76.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vinothkanna M, Karthikeyan C, Kumar GG, Kim AR, Yoo DJ. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta A. 2015;136:256–64.CrossRefGoogle Scholar
  27. 27.
    Rani GJ, Babu KJ, Kumar GG, Rajan MAJ. Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine. J Alloy Compd. 2016;688:500–12.CrossRefGoogle Scholar
  28. 28.
    Cui ZM, Jiang LY, Song WG, Guo YG. High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem Mater. 2009;21:1162–6.CrossRefGoogle Scholar
  29. 29.
    Chandra V, Park J, Chun Y, Lee JW, Hwang I, Kim KS. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4:3979–86.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Shi R, Yan L, Xu T, Liu D, Zhu Y, Zhou J. Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke. J Chromatogr A. 2015;1375:1–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou G, Wang D, Yin L, Li N, Li F, Cheng H. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano. 2012;6:3214–23.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chen T, Du P, Jiang W, Liu J, Hao GZ, Gao H, Xiao L, Ke X, Zhao FQ, Xuan CL. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6:83838–47.CrossRefGoogle Scholar
  33. 33.
    Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci. 1999;212:49–57.CrossRefGoogle Scholar
  34. 34.
    Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C. 2011;115:17009–19.CrossRefGoogle Scholar
  35. 35.
    Petit C, Seredych M, Bandosz TJ. Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J Mater Chem. 2009;19:9176–85.CrossRefGoogle Scholar
  36. 36.
    Thiruvengadathan R, Chung SW, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S. A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir. 2014;30:6556–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Li H, Xu T, Wang C, Chen J, Zhou H, Liu H. Tribochemical effects on the friction and wear behaviors of diamond-like carbon film under high relative humidity condition. Tribol Lett. 2005;19:231–8.CrossRefGoogle Scholar
  38. 38.
    Zhou J, Song H, Ma L, Chen X. Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv. 2011;1:782–91.CrossRefGoogle Scholar
  39. 39.
    Fujii T, de Groot F, Sawatzky GA, Voogt FC, Hibma T, Okada K. In situ XPS analysis of various iron oxide films grown by NO2-assisted olecular-beam epitaxy. Phys Rev B. 1999;59:3195–202.CrossRefGoogle Scholar
  40. 40.
    Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H. Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta. 2010;56:834–40.CrossRefGoogle Scholar
  41. 41.
    Fitzgerald RP, Brewster MQ. Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate. Combust Flame. 2004;136:313–26.CrossRefGoogle Scholar
  42. 42.
    Lu ZP, Xiong Y, Xue XG, Zhang CY. Unusual protonation of the hydroxylammonium cation leading to the low thermal stability of hydroxylammonium-based salts. J Phys Chem C. 2017;121:27874–85.CrossRefGoogle Scholar
  43. 43.
    Kissinger HE. Reaction kinetics on differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  44. 44.
    Yan QL, Zeman S, Zhang JG, Qi XF, Li T, Musil T. Multistep thermolysis mechanisms of azido-s-triazine derivatives and kinetic compensation effects for the rate-limiting processes. J Phys Chem C. 2015;119:14861–72.CrossRefGoogle Scholar
  45. 45.
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Jiankan Zhang
    • 1
  • Fengqi Zhao
    • 1
    Email author
  • Yanjing Yang
    • 1
  • Qilong Yan
    • 2
  • Ming Zhang
    • 1
  • Wenzhe Ma
    • 1
  1. 1.Science and Technology on Combustion and Explosion LaboratoryXi’an Modern Chemistry Research InstituteXi’anChina
  2. 2.Science and Technology on Combustion, Internal Flow and Thermal-structure LaboratoryNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations