Advertisement

Experimental analyses on heat transfer performance of TiO2–water nanofluid in double-pipe counter-flow heat exchanger for various flow regimes

  • R. SubramanianEmail author
  • A. Senthil Kumar
  • K. Vinayagar
  • C. Muthusamy
Article
  • 8 Downloads

Abstract

Nanofluids are widely used in heat transfer applications. This article presents the effect of heat transfer and pressure drop of the TiO2–water nanofluids flowing in a double-tube counter-flow heat exchanger with various flow patterns. In this experimental work, performance of TiO2–water nanofluid on heat transfer in three different cases such as laminar, transition and turbulent flow region were analyzed. TiO2 nanoparticles with average diameters of 20 nm dispersed in water with three volume concentrations of 0.1, 0.3 and 0.5 vol% were used as the test fluid. The results show that the heat transfer of nanofluids is higher than that of the base liquid (water) and increased with the increase in Reynolds number and particle concentrations. The heat transfer rate of nanofluid with 0.5 vol% was 25% greater than that of base liquid, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 0.5 vol% was 15% higher than that of base fluid at given conditions. Pressure drop of nanofluid was increased with increase in volume concentration, and it is slightly higher than that of the base fluid.

Keywords

Nanoparticle Nusselt number Pressure drop TiO2–water nanofluid Turbulent flow 

List of symbols

A

Cross-sectional area (m2)

C

Specific heat (kJ kg−1 K−1)

D

Internal diameter of the tube (m)

K

Thermal conductivity (W m−1 K−1)

T

Temperature (K)

m

Mass flow rate (kg s−1)

Q

Heat transfer rate (W)

Nuave

Average Nusselt number

h

Heat transfer coefficient (W m−1 K−1)

Re

Reynolds number

Nu

Nusselt number

g

Acceleration dew to gravity (m s−2)

H

Difference of pressure head (m)

f

Friction factor

L

Length of the heat exchanger (m)

ρnf

Density of nanofluid (kg m−3)

ρf

Density of base fluid (kg m−3)

ρp

Density of nanoparticle (kg m−3)

\((C_{\text{p}})_{\text{nf}}\)

Specific heat of nanofluid (kJ kg−1 K−1)

\((C_{\text{p}})_{\text{f}}\)

Specific heat of base fluid (kJ kg−1 K−1)

\((C_{\text{p}})_{\text{p}}\)

Specific heat of nanoparticle (kJ kg−1 K−1)

Knf

Thermal conductivity of nanofluid (W m−1 K−1)

kp

Thermal conductivity of nanoparticle (W m−1 K−1)

kf

Thermal conductivity of base fluid (W m−1 K−1)

μnf

Dynamic viscosity of nanofluid (kg m−1 s−1)

μbf

Dynamic viscosity of base fluid (kg m−1 s−1)

Qc

Heat transfer of cold fluid (kW)

Qh

Heat transfer of hot fluid (kW)

Qw

Heat transfer of base fluid (kW)

Qnf

Heat transfer of nanofluid (kW)

Qmean

Average heat transfer of base fluid and nanofluid (kW)

Tci

Temperature of cold fluid inlet (K)

Thi

Temperature of hot fluid inlet (K)

Tco

Temperature of cold fluid outlet (K)

Tho

Temperature of hot fluid outlet (K)

hnf

Convective heat transfer coefficient of nanofluid (kW m−2 K−1)

ρccl4

Density of carbon tetra chloride (Kg m−3)

Greek letters

μ

Dynamic viscosity (kg m−1 s−1)

φ

Volume concentration of nanofluid (%)

ρ

Density (kg m−3)

p

Pressure drop (N m−2)

Suffix

i

Inner tube or inlet

c

Cold fluid

h

Hot water

f

Base fluid

p

Particle

nf

Nanofluids

Notes

References

  1. 1.
    Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7):2059–67.  https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023.CrossRefGoogle Scholar
  2. 2.
    Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.  https://doi.org/10.1007/s10973-017-6649-x.CrossRefGoogle Scholar
  3. 3.
    Hemmat EM, Hassani AMR, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.CrossRefGoogle Scholar
  4. 4.
    Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT-alumina/water (80%)-ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.  https://doi.org/10.1007/s10973-018-7009-1.CrossRefGoogle Scholar
  5. 5.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part I: fundamentals and theory. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.004.CrossRefGoogle Scholar
  6. 6.
    Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.CrossRefGoogle Scholar
  7. 7.
    Chun BH, Kang HU, Hyun KS. Effect of alumina nanoparticles in the fluid on heat transfer in double pipe heat exchanger system. Korean J Chem Eng. 2008;25:966–71.  https://doi.org/10.1007/s11814-008-0156-5.CrossRefGoogle Scholar
  8. 8.
    Muthusamy V, Skryabin S. Effect of conical cut-out turbulators with internal fins in a circular tube on heat transfer and friction factor. Int Commun Heat Mass Transf. 2013;44:64–8.  https://doi.org/10.1016/j.icheatmasstransfer.2013.03.004.CrossRefGoogle Scholar
  9. 9.
    Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.  https://doi.org/10.1007/s10973-017-6213-8.CrossRefGoogle Scholar
  10. 10.
    Rabienataj DA, Farhadi M, Sedighi K. Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. Int Commun Heat Mass Transf. 2013;47:105–12.  https://doi.org/10.1016/j.icheatmasstransfer.2013.06.003.CrossRefGoogle Scholar
  11. 11.
    Aghayari R, Maddah H, Ashori F, Hakiminejad A, Aghili M. Effect of nanoparticles on heat transfer in mini double pipe heat exchangers in turbulent flow. Heat Mass Transf. 2013.  https://doi.org/10.1007/s00231-014-1415-0.CrossRefGoogle Scholar
  12. 12.
    Reddy MCS, Rao VV. Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf. 2014;50:68–76.  https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002.CrossRefGoogle Scholar
  13. 13.
    Khedkar R, Sonawane SS, Wasewar KL. Heat transfer study on concentric tube heat exchanger using TiO2–water-based nanofluid. Int Commun Heat Mass Transf. 2014.  https://doi.org/10.1016/j.icheatmasstransfer.2014.07.011.CrossRefGoogle Scholar
  14. 14.
    Muthusamy C, Gowtham M, Manickam S, Manjunathan M, Srithar K. Enhancement of productivity of humidification–dehumidification desalination using modified air heater. Desalination Water Treat. 2015;56(12):3294–304.  https://doi.org/10.1080/19443994.2014.968876.CrossRefGoogle Scholar
  15. 15.
    Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017;137:160–71.  https://doi.org/10.1016/j.energy.2017.06.104.CrossRefGoogle Scholar
  16. 16.
    Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132(1):741–59.  https://doi.org/10.1007/s10973-017-6900-5.CrossRefGoogle Scholar
  17. 17.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.CrossRefGoogle Scholar
  18. 18.
    Freidoonimehr N, Rostami B, Rashidi MM, Omoniat E. Analytical modelling of three-dimensional squeezing nanofluid flow in a rotating channel on a lower stretching porous wall., Mathematical Problems in EngineeringLondon: Hindawi Publishing Corporation; 2014. p. 1–14.  https://doi.org/10.1155/2014/692728.CrossRefGoogle Scholar
  19. 19.
    Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2005;49:240–50.  https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009.CrossRefGoogle Scholar
  20. 20.
    Sarafraz MM, Hormozi F, Nikkhah V. Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Exp Therm Fluid Sci. 2016;78:41–9.  https://doi.org/10.1016/j.expthermflusci.2016.05.014.CrossRefGoogle Scholar
  21. 21.
    Diao Y, Li CZ, Zhang J, Zhao Y, Kang Y. Experimental investigation of MWCNT-water nanofluids flow and convective heat transfer characteristics in multiport minichannels with smooth/micro-fin surface. Powder Technol. 2017;305:206–16.  https://doi.org/10.1016/j.powtec.2016.10.011.CrossRefGoogle Scholar
  22. 22.
    Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1–3):334–44.  https://doi.org/10.1016/j.ijheatmasstransfer.09.024.CrossRefGoogle Scholar
  23. 23.
    Rohit K, Shriram S, Kailas W. Heat transfer study on concentric tube heat exchanger using TiO2–water-based nanofluids. Int Commun Heat Mass Transf. 2014;57:163–9.CrossRefGoogle Scholar
  24. 24.
    Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci. 2005;44(4):363–73.  https://doi.org/10.1016/j.ijthermalsci.2004.12.005 CrossRefGoogle Scholar
  25. 25.
    Ma Y, Mohebbi R, Rashidi ZY. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30:032001–13.  https://doi.org/10.1063/1.5022060.CrossRefGoogle Scholar
  26. 26.
    Rashidi MM, Bhatti MM, Abbas MA, Ali ME-S. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;18(117):1–16.  https://doi.org/10.3390/e18040117.CrossRefGoogle Scholar
  27. 27.
    Ali Abbas M, Bai YQ, Rashidi MM, Bhatti MM. Application of drug delivery in magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel. J Mech Med Biol. 2016;16(4).  https://doi.org/10.1142/S0219519416500524.CrossRefGoogle Scholar
  28. 28.
    Makulati N, Kasaeipoor A, Rashidi MM. Numerical study of natural convection of a water–alumina nanofluid in inclined C-shaped enclosures under the effect of magnetic field. Adv Powder Technol. 2016;27(2):661–72.  https://doi.org/10.1016/j.apt.2016.02.020.CrossRefGoogle Scholar
  29. 29.
    Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha A, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Heat Mass Transf. 2017;107:778–91.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074.CrossRefGoogle Scholar
  30. 30.
    Karimipour-Fard P, Afshari E, Ziaei-Rad M, Taghian-Dehaghani S. A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system. Chin J Chem Eng. 2017.  https://doi.org/10.1016/j.cjche.2017.01.015.CrossRefGoogle Scholar
  31. 31.
    Syam Sundar L, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017.  https://doi.org/10.1016/j.rser.2016.09.108.CrossRefGoogle Scholar
  32. 32.
    Naseema SK, NawazishMehdia S, Hussain MM, Basha SK, Samad MA. Heat enhancement of heat exchanger using aluminium oxide (Al2O3), copper oxide (CUO) nanofluids with different concentrations. Mater Today Proc. 2018;5(2):6481–8.  https://doi.org/10.1016/j.matpr.2017.12.261 CrossRefGoogle Scholar
  33. 33.
    Phanindra Y, Kumar SD, Pugazhendhi S. Experimental investigation on Al2O3 & Cu/Oil hybrid nano fluid using concentric tube heat exchanger. Mater Today Proc. 2018;5(2):12142–50.  https://doi.org/10.1016/j.matpr.2018.02.192.CrossRefGoogle Scholar
  34. 34.
    Moradi A, Toghraie D, Isfahani AHM, Hosseinian A. An experimental study on MWCNT-water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim. 2019;1:21.  https://doi.org/10.1007/s10973-019-08076-0.CrossRefGoogle Scholar
  35. 35.
    Suresh S, Chandrasekar M, Chandrasekhar S. Experimental studies on heat transfer and friction factor charecteristics of Cuo/water nanofluid under turbulent flow in a helically dimpled tube. Exp Therm Fluid Sci. 2011;35:542–9.CrossRefGoogle Scholar
  36. 36.
    Xuan Y, Roetzel W. Conceptions for heat transfer correlations of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.CrossRefGoogle Scholar
  37. 37.
    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–82.CrossRefGoogle Scholar
  38. 38.
    Kakac S, Liu H. Heat exchangers: selection, rating, and thermal design. 2nd ed. CRC Press; 2002. p. 131–227.Google Scholar
  39. 39.
    Swamee PK, Aggarwal N. Optimum design of double pipe heat exchanger. Int J Heat Mass Transf. 2008;51:2260–6.CrossRefGoogle Scholar
  40. 40.
    Bell KJ. Final report of the cooperative research program on shell and tube heat exchangers. Engineering Experiment Station Bulletin. University of Delaware; 1963.Google Scholar
  41. 41.
    Rohsenow WM, Hartnett JR, Cho YI. Chapter 5: Forced convection, internal flow in ducts. In: Handbook of Heat Transfer. 3rd ed. New York: McGraw-Hill; 1944.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • R. Subramanian
    • 1
    Email author
  • A. Senthil Kumar
    • 1
  • K. Vinayagar
    • 1
  • C. Muthusamy
    • 1
  1. 1.Department of Mechanical EngineeringSethu Institute of TechnologyPulloor, KariapattiIndia

Personalised recommendations