Modeling of nanomaterial treatment through a porous space including magnetic forces

  • M. Sheikholeslami
  • A. Arabkoohsar
  • Houman BabazadehEmail author


In present article, influence of magnetic forces on migration of nanomaterial through a permeable zone via an innovative method is investigated. The porous cavity packed with CuO-water nanofluid, a magneto-hydrodynamic effect is imposed, and the numerical simulation method is CVFEM. The investigations include various radiation terms, Hartmann and Rayleigh numbers and the nanomaterial shape factor and their corresponding effects on thermal properties of nanomaterial. The results reveal that Nusselt number is in direct relation with radiation term, convective mechanism becomes stronger with improve of shape effect, and temperature gradient goes up as the Hartmann number drops or Rayleigh number augments. Finally, established on derived outputs, a precise formula for Nuave as a function of the aforementioned parameters is developed.


Nanoparticle CVFEM Two-temperature model Lorenz force Porous media 



  1. 1.
    Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019. Scholar
  2. 2.
    Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger; review. J Therm Anal Calorim. 2019. Scholar
  3. 3.
    Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. Scholar
  4. 4.
    Sarafraz MM, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with copper oxide-indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng. 2018;137:700–9.CrossRefGoogle Scholar
  5. 5.
    Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019. Scholar
  6. 6.
    Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.CrossRefGoogle Scholar
  7. 7.
    Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019. Scholar
  8. 8.
    Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.CrossRefGoogle Scholar
  9. 9.
    Zhu GP, Yao J, Sun H, Zhang M, Xie MJ, Sun ZX, Lu T. The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir. J Nat Gas Sci Eng. 2016;28:305–16. Scholar
  10. 10.
    Mohamadi-Baghmolaei M, Azin R, Osfuri S, Mohamadi-Baghmolaei R, Zarei Z. Prediction of gas compressibility factor using intelligent models. Nat Gas Ind B. 2015;2:283–94. Scholar
  11. 11.
    Usman M, Soomro FA, Ul Haq R, Wang W, Defterli O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. Int J Heat Mass Transf. 2018;122:1255–63.CrossRefGoogle Scholar
  12. 12.
    Gibanov NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection with entropy generation of nanofluid in a lid-driven cavity under the effects of a heat-conducting solid wall and vertical temperature gradient. Eur J Mech B/Fluids. 2018;70:148–59.CrossRefGoogle Scholar
  13. 13.
    Sheikholeslami M, Ul Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.CrossRefGoogle Scholar
  14. 14.
    Qin Yinghong, Hiller Jacob E, Meng Demiao. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019. Scholar
  15. 15.
    Sheikholeslami M, Jafaryar M. Ahmad Shafee, Zhixiong Li, Rizwan-ul Haq, Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.CrossRefGoogle Scholar
  16. 16.
    Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.CrossRefGoogle Scholar
  17. 17.
    Sheikholeslami M, Keramati H, Shafee A, Li Z, Alawad OA, Tlili I. Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Physica A. 2019;523:87–104.CrossRefGoogle Scholar
  18. 18.
    Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.Google Scholar
  19. 19.
    J. Rafelski, The Lorentz force. In: Relativity matters. Springer, Cham, 2017.CrossRefGoogle Scholar
  20. 20.
    Khan M, Irfan M, Ahmad L, Khan WA. Simultaneous investigation of MHD and convective phenomena on time-dependent flow of Carreau nanofluid with variable properties: dual solutions. Phys Lett A. 2018;382:2334–42.CrossRefGoogle Scholar
  21. 21.
    Ul Haq R, Nadeem S, Khan ZH, Noor NFM. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B Condens Matter. 2015;457:40–7.CrossRefGoogle Scholar
  22. 22.
    Zhao G, Wang Z, Jian Y. Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects. Int J Heat Mass Transf. 2019;130:821–30.CrossRefGoogle Scholar
  23. 23.
    Sheikholeslami M, Ul Haq R, Shafee A, Li Z. Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.CrossRefGoogle Scholar
  24. 24.
    Kandasamy R, Dharmalingam R, SivagnanaPrabhu KK. Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alex Eng J. 2018;57:121–30.CrossRefGoogle Scholar
  25. 25.
    Liu Qun, Jiang Daqing, Hayat Tasawar, Alsaedi Ahmed. Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation. Phys A. 2018;508:289–304.CrossRefGoogle Scholar
  26. 26.
    Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fract. 2016;89:290–4.CrossRefGoogle Scholar
  27. 27.
    Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.CrossRefGoogle Scholar
  28. 28.
    Sheikholeslami M. Omid Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.CrossRefGoogle Scholar
  29. 29.
    Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.CrossRefGoogle Scholar
  30. 30.
    Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.CrossRefGoogle Scholar
  31. 31.
    Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.CrossRefGoogle Scholar
  32. 32.
    Siddheshwar PG, Vanishree RK. Lorenz and Ginzburg-Landau equations for thermal convection in a high-porosity medium with heat source. Ain Shams Eng J. 2018;9:1547–55.CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.CrossRefGoogle Scholar
  34. 34.
    Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.CrossRefGoogle Scholar
  35. 35.
    Sheikholeslami Mohsen, Arabkoohsar Ahmad, Khan Ilyas, Shafee Ahmad, Li Zhixiong. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.CrossRefGoogle Scholar
  36. 36.
    Sharif MAR, Mohammad TR. Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls. Int J Therm Sci. 2005;44:865–78.CrossRefGoogle Scholar
  37. 37.
    Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK. Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci. 1995;33:1075–84.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • M. Sheikholeslami
    • 1
    • 2
  • A. Arabkoohsar
    • 3
  • Houman Babazadeh
    • 4
    • 5
    Email author
  1. 1.Department of Mechanical EngineeringBabol Noshirvani University of TechnologyBabolIslamic Republic of Iran
  2. 2.Renewable Energy Systems and Nanofluid Applications in Heat Transfer LaboratoryBabol Noshirvani University of TechnologyBabolIslamic Republic of Iran
  3. 3.Department of Energy TechnologyAalborg UniversityAalborgDenmark
  4. 4.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations