Silica aerogel-filled PMMA by in situ reverse atom transfer radical polymerization: kinetics and thermal studies

  • Hamed Shaabani
  • Soroush Davoudizadeh
  • Seyed Amin Shobeiri
  • Saeed Bahadorikhalili
  • Khezrollah KhezriEmail author


Hydrophobically modified silica aerogel nanoparticles (H-SiANp) were used for in situ polymerization of methyl methacrylate by reverse atom transfer radical polymerization to synthesize well-defined PMMA nanocomposites. Inherent characteristics of the prepared H-SiANp were evaluated by nitrogen adsorption/desorption isotherms, SEM, and TEM. Conversion and molecular weight determinations were carried out using GC and SEC, respectively. Addition of 3 mass% of the H-SiANp leads to decrement of conversion from 92 to 74%. Molecular weight of poly (methyl methacrylate) chains also decreases from 19,737 to 15,662 g mol−1 by addition of only 3 mass% H-SiANp; however, PDI values increase from 1.36 to 1.82. Linear increase of ln(M0/M) with time for all the samples shows that polymerization proceeds in a living manner. In addition, suitable agreement between theoretical and experimental molecular weight in combination with low PDI values can appropriately demonstrate the living nature of the polymerization. TG results indicate that by increasing H-SiANp content, improvements in thermal stability of the nanocomposites were obtained. DSC results show a decrease in glass transition temperature from 87.4 to 80.9 °C by addition of 3 mass% H-SiANp.


Nanocomposite HMDS-modified silica aerogel nanoparticles Kinetics study RATRP PMMA 



  1. 1.
    Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev. 2008;108:3893–957.CrossRefGoogle Scholar
  2. 2.
    Janowska G, Mikołajczyk T, Olejnik M. Thermal properties and flammability of fibres made from polyimidoamide nanocomposite. J Therm Anal Calorim. 2007;88:843–9.CrossRefGoogle Scholar
  3. 3.
    Khezri K, Ghasemi M, Fazli Y. Effect of mesoporous diatomite particles on the kinetics of SR&NI ATRP of styrene and butyl acrylate. Z Phys Chem. 2018;232:471–87.Google Scholar
  4. 4.
    Zhang J, Yang Y, Zhao C, Zhao H. PS/PMMA mixed polymer brushes on the surface of clay layers: preparation and application in polymer blends. J Polym Sci Part A Polym Chem. 2007;45:5329–38.CrossRefGoogle Scholar
  5. 5.
    Nguyen QT, Baird DG. Preparation of polymer-clay nanocomposites and their properties. Adv Polym Technol. 2006;25:270–85.CrossRefGoogle Scholar
  6. 6.
    Khezri K, Fazli Y. Influence of mesoporous diatomite on atom transfer radical random copolymerization of styrene and methyl methacrylate: kinetics and thermal studies. J Thermoplas Compos Mater. 2019. Scholar
  7. 7.
    Ji X, Hampsey JE, Hu Q, He J, Yang Z, Lu Y. Mesoporous silica-reinforced polymer nanocomposites. Chem Mater. 2003;15:3656–62.CrossRefGoogle Scholar
  8. 8.
    Cabanas A, Enciso E, Carbajo MC, Torralvo MJ, Pando C, Renuncio JAR. Synthesis of SiO2-aerogel inverse opals in supercritical carbon dioxide. Chem Mater. 2005;17:6137–45.CrossRefGoogle Scholar
  9. 9.
    Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev. 1997;97:2373–419.CrossRefGoogle Scholar
  10. 10.
    Zhang J, Grischkowsky D. Terahertz time-domain spectroscopy study of silica aerogels and adsorbed molecular vapors. J Phys Chem B. 2004;108:18590–600.CrossRefGoogle Scholar
  11. 11.
    Bhagat SD, Kim Y-H, Suh K-H, Ahn Y-S, Yeo J-G, Han J-H. Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels. Microporous Mesoporous Mater. 2008;112:504–9.CrossRefGoogle Scholar
  12. 12.
    Dunn BC, Cole P, Covington D, Webster MC, Pugmire RJ, Ernst RD, Eyring EM, Shah N, Huffman GP. Silica aerogel supported catalysts for Fischer-Tropsch synthesis. Appl Catal A Gen. 2005;278:233–8.CrossRefGoogle Scholar
  13. 13.
    Ye L, Ji Z-H, Han W-J, Hu J-D, Zhao T. Synthesis and characterization of silica/carbon composite aerogels. J Am Ceram Soc. 2010;93:1156–63.CrossRefGoogle Scholar
  14. 14.
    Sarawade PB, Kim J, Kim H, Kim H. High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl Surf Sci. 2007;254:574–9.CrossRefGoogle Scholar
  15. 15.
    Khezri K, Mahdavi H. Polystyrene-silica aerogel nanocomposites by in situ simultaneous reverse and normal initiation technique for ATRP. Microporous Mesoporous Mater. 2016;228:132–40.CrossRefGoogle Scholar
  16. 16.
    Braunecker W, Matyjaszewski K. Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci. 2007;32:93–146.CrossRefGoogle Scholar
  17. 17.
    Zetterlund PB, Kagawa Y, Okubo M. Controlled/living radical polymerization in dispersed systems. Chem Rev. 2008;108:3747–94.CrossRefGoogle Scholar
  18. 18.
    Cunningham MF. Controlled/living radical polymerization in aqueous dispersed systems. Prog Polym Sci. 2008;33:365–98.CrossRefGoogle Scholar
  19. 19.
    Oh JK. Recent advances in controlled/living radical polymerization in emulsion and dispersion. J Polym Sci Part A Polym Chem. 2008;46:6983–7001.CrossRefGoogle Scholar
  20. 20.
    Khezri K, Fazli Y. A study on the kinetics and thermal properties of polystyrene/diatomite nanocomposites prepared via in situ ATRP. J Thermoplas Compos Mater. 2018. Scholar
  21. 21.
    Chambard G, De Man P, Klumperman B. Atom transfer radical polymerization in emulsion. Macromol Symp. 2000;150:45–51.CrossRefGoogle Scholar
  22. 22.
    Boday DJ, Keng PY, Muriithi B, Pyun J, Loy DA. Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations. J Mater Chem. 2010;20:6863–5.CrossRefGoogle Scholar
  23. 23.
    Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari S-A, Khezri K. “Grafting through’’ approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible additionfragmentation chain transfer polymerization. J Sol-Gel Sci Technol. 2013;66:337–44.CrossRefGoogle Scholar
  24. 24.
    Chen-Yang YW, Wang YL, Chen YT, Li YK, Chen HC, Chiu HY. Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery. J Power Sour. 2008;182:340–8.CrossRefGoogle Scholar
  25. 25.
    Boday DJ, Stover RJ, Muriithi B, Keller MW, Wertz JT, Obrey KAD, Loy DA. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels. ASC Appl Mater Interfaces. 2009;1:1364–9.CrossRefGoogle Scholar
  26. 26.
    Costela A, Moreno IG, Gomez C, Garcia O, Sastre R, Roig A, Molins E. Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers. J Phys Chem B. 2005;109:4475–80.CrossRefGoogle Scholar
  27. 27.
    Bhagat SD, Kim Y-H, Moon M-J, Ahn Y-S, Yeo J-G. A cost-effective and fast synthesis of nanoporous SiO2 aerogel powders using water-glass via ambient pressure drying route. Solid State Sci. 2007;9:628–35.CrossRefGoogle Scholar
  28. 28.
    Lowes BJ, Bohrer AG, Tran T, Shipp DA. Grafting of polystyrene ‘‘from’’ and ‘‘through’’ surface modified titania nanoparticles. Polym Bull. 2009;62:281–9.CrossRefGoogle Scholar
  29. 29.
    Xi J, Qiu X, Zhu W, Tang X. Enhanced electrochemical properties of poly(ethylene oxide)-based composite polymer electrolyte with ordered mesoporous materials for lithium polymer battery. Microporous Mesoporous Mater. 2006;88:1–7.CrossRefGoogle Scholar
  30. 30.
    Li M, Matyjaszewski K. Reverse atom transfer radical polymerization in miniemulsion. Macromolecules. 2003;36:6028–35.CrossRefGoogle Scholar
  31. 31.
    Karimi M, Davoudizadeh S, Bahadorikhalili S, Khezri K. Investigating the effect of silica aerogel nanoparticles on the kinetics of AGET ATRP of methyl methacrylate. Z Phys Chem 2018. Scholar
  32. 32.
    Khezri K, Fazli Y. ATRP of methyl methacrylate in the presence of HMDS-modified silica aerogel: ARGET approach. J Inorg Organomet Polym Mater. 2019;29:608–16.CrossRefGoogle Scholar
  33. 33.
    Khezri K, Fazli Y. Evaluation of the effect of hydrophobically modified silica aerogel on the ARGET ATRP of styrene and butyl acrylate. Micropo Mesopor Mater 2019;280:236–42.CrossRefGoogle Scholar
  34. 34.
    Khezri K, Roghani-Mamaqani H. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles. Mater Res Bull. 2014;59:241–8.CrossRefGoogle Scholar
  35. 35.
    Bon SA, Colver PJ. Pickering miniemulsion polymerization using Laponite clay as a stabilizer. Langmuir. 2007;23:8316–22.CrossRefGoogle Scholar
  36. 36.
    Khezri K, Fazli Y. A study on the properties of poly (styrene-co-methyl methacrylate)/silica aerogel nanocomposites prepared via in situ SR&NI ATRP. Acta Chim Slov 2018;65:998–1007.CrossRefGoogle Scholar
  37. 37.
    Khezri K, Fazli Y. Synthesis and characterization of poly (styrene-co-butyl acrylate)/silica aerogel nanocomposites by in situ AGET ATRP: investigating thermal properties. High Temp Mater Proc. 2016;36:955–62.Google Scholar
  38. 38.
    Xia J, Matyjaszewski K. Homogeneous reverse atom transfer radical polymerization of styrene initiated by peroxides. Macromolecules. 1999;32:5199–202.CrossRefGoogle Scholar
  39. 39.
    Yi Z, Pan K, Jiang L, Zhang J, Dan Y. Copper-based reverse ATRP process of styrene in mixed solvents. Eur Polym J. 2007;43:2557–63.CrossRefGoogle Scholar
  40. 40.
    Sarsabili M, Rahmatolahzadeh R, Shobeiri SA, Hamadanian M, Farazin A, Khezri K. Reverse atom transfer radical random copolymerization of styrene and methyl methacrylate in the presence of diatomite nanoplatelets. Polym Adv Technol. 2018;29:424–32.CrossRefGoogle Scholar
  41. 41.
    Khezri K, Fazli Y. Characterization of diatomite platelets and its application for in situ atom transfer radical random copolymerization of styrene and butyl acrylate: normal approach. J Inorg Organomet Polym. 2017;27:266–74.CrossRefGoogle Scholar
  42. 42.
    Khezri K. Polystyrene-mesoporous diatomite composites produced by in situ activators regenerated by electron transfer atom transfer radical polymerization. RSC Adv. 2016;6:109286–95.CrossRefGoogle Scholar
  43. 43.
    Fazli Y, Khezri K. Mesoporous diatomite-filled PMMA by in situ reverse atom transfer radical polymerization. Colloid Polym Sci. 2017;295:247–57.CrossRefGoogle Scholar
  44. 44.
    Ver Meer MA, Narasimhan B, Shanks BH, Mallapragada SK. Effect of mesoporosity on thermal and mechanical properties of polystyrene/silica composites. ACS Appl Mater Interfaces. 2010;2:41–7.CrossRefGoogle Scholar
  45. 45.
    Khezri K, Mahdavi H. Reverse atom transfer radical polymerization of styrene in the presence of functionalized silica aerogel nanoparticles. Z Phys Chem. 2016;230:1499–518.Google Scholar
  46. 46.
    Sarsabili M, Kalantari K, Khezri K. SR&NI atom transfer radical random copolymerization of styrene and butyl acrylate in the presence of MPS-functionalized silica aerogel nanoparticles: investigating thermal properties. J Therm Anal Calorim. 2016;126:1261–72.CrossRefGoogle Scholar
  47. 47.
    Khezri K, Roghani-Mamaqani H. Effect of MCM-41 nanoparticles on ARGET ATRP of styrene: investigating thermal properties. J Compos Mater. 2015;49:1525–35.CrossRefGoogle Scholar
  48. 48.
    Chen F, Clough A, Reinhard BM, Grinstaff MW, Jiang N, Koga T, Tsui OKC. Glass transition temperature of polymer-nanoparticle composites: effect of polymer-particle interfacial energy. Macromolecules. 2013;46:4663.CrossRefGoogle Scholar
  49. 49.
    Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS. Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules. 2013;46:2833–41.CrossRefGoogle Scholar
  50. 50.
    Ash BJ, Siegel RW, Schadler LS. Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci Part B Polym Phys. 2004;42:4371–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Research and Development DepartmentIranian Parenteral and Pharmaceutical Company (IPPC)TehranIran
  2. 2.School of Chemistry, University College of ScienceUniversity of TehranTehranIran
  3. 3.Young Researchers and Elite Club, South Tehran BranchIslamic Azad UniversityTehranIran
  4. 4.Young Researchers and Elite Club, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations