Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3403–3413 | Cite as

Oxidative stability, thermal hazard analysis, and decomposition kinetics of 1-methylimidazolium nitrate via DSC, TGA, and GC/MS

  • Vikranth Volli
  • Wei-Cheng Lin
  • Gubbala Vinay Sai Krishna
  • Harsh Bhardwaj
  • Chi-Min ShuEmail author
Article
  • 45 Downloads

Abstract

Imidazolium-based ionic liquids are green solvents used as separation and electrolyte media in liquid–liquid extraction processes and electrochemical devices. However, they are volatile and flammable once they reach their thermal decomposition temperatures. In the present study, the oxidative stability, decomposition, and combustion reaction of 1-methylimidazolium nitrate [Mim][NO3] were investigated via thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). TG analysis revealed a single-stage mass loss between 117.6 and 230.2 °C with oxidative onset temperatures in the range of 126.6–163.2 °C with the increase in heating rate (1.0, 2.0, 4.0, and 8.0 °C min−1). DSC results indicated the degradation as exothermic with the average enthalpy of decomposition as 1610.4 J g−1. The estimated average value of apparent activation energy using isoconversional methods such as Kissinger, FWO, and Friedman was in the range of 106.1–114.2 kJ mol−1, and the reaction function (autocatalytic model) is expressed as: f(α) = (1 − α)1.42 (0.017 + α0.62) using multivariate nonlinear regression. The GC/MS analysis revealed the formation of methane isocyanate indicating the hazardous, toxic, corrosive, and carcinogenic nature of the decomposed gases. This research was aimed to develop a predictive model for oxidative degradation behavior and to provide the necessary basis for the design of precise safety systems.

Keywords

Ionic liquids Thermal decomposition Apparent activation energy Isoconversional methods Multivariate nonlinear regression 

Notes

References

  1. 1.
    Porcedda S, Falconieri D, Marongiu B, Piras A. Calorimetric study of nitro group/solvent interactions: comparison with DISQUAC predictions. J Therm Anal Calorim. 2010;99:1015–23.CrossRefGoogle Scholar
  2. 2.
    Hallett JP, Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. 2. Chem Rev. 2011;11:3508–76.CrossRefGoogle Scholar
  3. 3.
    Vekariya RL. A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq. 2017;227:44–60.CrossRefGoogle Scholar
  4. 4.
    Ghandi K. A Review of ionic liquids, their limits and applications. Green Sustain Chem. 2014;04:44–53.CrossRefGoogle Scholar
  5. 5.
    Zhou J, Sui H, Jia Z, Yang Z, He L, Li X. Recovery and purification of ionic liquids from solutions: a review. RSC Adv. 2018;8:32832–64.CrossRefGoogle Scholar
  6. 6.
    Liaw HJ, Chen CC, Chen YC, Chen JR, Huang SK, Liu SN. Relationship between flash point of ionic liquids and their thermal decomposition. Green Chem. 2012;14:2001–8.CrossRefGoogle Scholar
  7. 7.
    De Castro CAN, Lourenço MJV, Ribeiro APC, Langa E, Vieira SIC, Goodrich P, et al. Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data. 2010;55:653–61.CrossRefGoogle Scholar
  8. 8.
    Ngo HL, LeCompte K, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357–358:97–102.CrossRefGoogle Scholar
  9. 9.
    Smiglak M, Reichert WM, Holbrey JD, Wilkes JS, Sun L, Thrasher JS, et al. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun. 2006;24:2554–6.CrossRefGoogle Scholar
  10. 10.
    Kulkarni PS, Branco LC, Crespo JG, Nunes MC, Raymundo A, Afonso CAM. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem A Eur J. 2007;13:8478–88.CrossRefGoogle Scholar
  11. 11.
    Kamavaram V, Reddy RG. Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci. 2008;47:773–7.CrossRefGoogle Scholar
  12. 12.
    Baranyai KJ, Deacon GB, MacFarlane DR, Pringle JM, Scott JL. Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem. 2004;57:145–7.CrossRefGoogle Scholar
  13. 13.
    Meine N, Benedito F, Rinaldi R. Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem. 2010;12:1711–4.CrossRefGoogle Scholar
  14. 14.
    Gelfand BE, Khomik SV, Eremenko LT, Tsiganov SA. Basic features of the self-ignition of atomized liquid nitro/nitrate/nitrite compounds in a gaseous medium. Proc Combust Inst. 2000;28:879–83.CrossRefGoogle Scholar
  15. 15.
    Olivares RI. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres. Sol Energy. 2012;86:2576–83.CrossRefGoogle Scholar
  16. 16.
    Hainer RM. The application of kinetics to the hazardous behavior of ammonium nitrate. Symp Combust. 1955;5:224–30.CrossRefGoogle Scholar
  17. 17.
    Wang C, Du Y, Che D. Study on N2O reduction with synthetic coal char and high concentration CO during oxy-fuel combustion. Proc Combust Inst. 2015;35:2323–30.CrossRefGoogle Scholar
  18. 18.
    Liu SH, Lin WC, Xia H, Hou HY, Shu CM. Combustion of 1-butylimidazolium nitrate via DSC, TG, VSP2, FTIR, and GC/MS: an approach for thermal hazard, property and prediction assessment. Process Saf Environ Prot. 2018;116:603–14.CrossRefGoogle Scholar
  19. 19.
    Kossoy A, Akhmetshin Y. Identification of kinetic models for the assessment of reaction hazards. Process Saf Prog. 2006;25:209–20.Google Scholar
  20. 20.
    Yuan MH, Shu CM, Kossoy AA. Kinetics and hazards of thermal decomposition of methyl ethyl ketone peroxide by DSC. Thermochim Acta. 2005;430:67–71.CrossRefGoogle Scholar
  21. 21.
    Kossoy A, Benin A, Akhmetshin Y. An advanced approach to reactivity rating. J Hazard Mater. 2005;118:9–17.CrossRefGoogle Scholar
  22. 22.
    Verevkin SP, Emel’Yanenko VN, Zaitsau DH, Heintz A, Muzny CD, Frenkel M. Thermochemistry of imidazolium-based ionic liquids: experiment and first-principles calculations. Phys Chem Chem Phys. 2010;12:14994–5000.CrossRefGoogle Scholar
  23. 23.
    Lin W-C, Yu W-L, Liu S-H, Huang S-Y, Hou H-Y, Shu C-M. Thermal hazard analysis and combustion characteristics of four imidazolium nitrate ionic liquids. J Therm Anal Calorim. 2018;133:683–93.CrossRefGoogle Scholar
  24. 24.
    Feng W-Q, Lu Y-H, Chen Y, Lu Y-W, Yang T. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J Therm Anal Calorim. 2016;125:143–54.CrossRefGoogle Scholar
  25. 25.
    Borchardt HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1956;79:41–6.CrossRefGoogle Scholar
  26. 26.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  27. 27.
    Ozawa T. A New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  28. 28.
    Arora S, Bagoria R, Kumar M. Effect of alpha-tocopherol (vitamin E) on the thermal degradation behavior of edible oils. J Therm Anal Calorim. 2009;102:375–81.CrossRefGoogle Scholar
  29. 29.
    Liang R, Yang M, Xuan X. Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide. Chin J Chem Eng. 2010;18:736–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Safety, Health, and Environmental EngineeringNational Yunlin University of Science and Technology (YunTech)DouliouTaiwan, ROC
  2. 2.Graduate School of Engineering Science and TechnologyYunTechDouliouTaiwan, ROC
  3. 3.Department of Chemical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations