Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3673–3678 | Cite as

Thermal evaluation of rubber compounds containing pecan nutshell powder for tire treads

  • Lisandra AbattiEmail author
  • Eleno Rodrigues Vieira
  • Janaina da Silva CrespoEmail author
Article
  • 44 Downloads

Abstract

This work presents the thermal study of rubber compositions with the addition of pecan nutshell powder, which is renewable and environmentally friendly, as a replacement for carbon black in treads for tires. Pecan nutshell is composed of cellulose, hemicellulose and lignin, and their quantity was evaluated by thermogravimetric analysis (TG) through the step-and-hold method. Thermal stability of the samples with pecan nutshell was verified by TG compared with the sample with only carbon black. The value of tan δ evaluated by dynamic mechanical analysis in the specific temperature values indicates the wet traction and rolling resistance for tires. Higher tan δ at 0 °C was observed in the samples containing pecan nutshell, which indicates better wet traction; however, the higher results observed at 60 °C indicate a worst rolling resistance. Results of oxidation induction time, by differential scanning calorimetry, show that the oxidation time increased with the addition of pecan nutshell in the compounds, indicating better antioxidant properties, justified by the presence of lignin.

Keywords

Pecan nutshell Rubber TG DMA DSC OIT 

Notes

Acknowledgements

The authors would like to thank Capes and Vipal Borrachas S.A for the financial support.

References

  1. 1.
    Medrano JAL, Martínez DB, De la Rosa JR, Pedraza ESC, Flores-Escamilla GA, Ciuta S. Particle pyrolysis modeling and thermal characterization of pecan nutshell. J Therm Anal Calorim. 2016;126(2):969–79.CrossRefGoogle Scholar
  2. 2.
    Baillie C. Green composites: polymer composites and the environment. Boca Raton: CRC Press; 2005.CrossRefGoogle Scholar
  3. 3.
    Naghmouchi I, Espinach FX, Mutjé P, Boufi S. Polypropylene composites based on lignocellulosic fillers: how the filler morphology affects the composite properties. Mater Des. 2015;65:454–61.CrossRefGoogle Scholar
  4. 4.
    Dittenberg DB, GangaRao HV. Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf. 2012;43(8):1419–29.CrossRefGoogle Scholar
  5. 5.
    Masek A, Diakowska K, Zaborski M. Physico-mechanical and thermal properties of epoxidized natural rubber/polylactide (ENR/PLA) composites reinforced with lignocellulose. J Therm Anal Calorim. 2016;125(3):1467–76.CrossRefGoogle Scholar
  6. 6.
    Hakeem KR, Jawaid M, Rashid U. Biomass and bioenergy: processing and properties. Berlin: Springer; 2014.CrossRefGoogle Scholar
  7. 7.
    Dehghani A, Ardekani SM, Al-Maadeed MA, Hassan A, Wahit MU. Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater Des. 2013;52:841–8.CrossRefGoogle Scholar
  8. 8.
    Area destinada a colheita - produto das lavouras permanentes - grandes areas - noz pecan. https://sidra.ibge.gov.br/Tabela/1613#resultado. Accessed 24 Jun 2018.
  9. 9.
    Ligowski E. SCBeFTS. Materiais compósitos a base de fibras da cana-de-açúcar e polímeros reciclados obtidos através da técnica de extrusão. Rev Polím. 2015;25:70–5.CrossRefGoogle Scholar
  10. 10.
    Mulinari DR. Comportamento térmico, mecânico e morfológico dos compósitos de polietileno de alta densidade reforçados com fibras de celulose do bagaço de cana de açúcar; 2009.Google Scholar
  11. 11.
    Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2002;124(31):9074–82.CrossRefGoogle Scholar
  12. 12.
    Festucci-buselli RA, Otoni WC, Joshi CP. Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol. 2007;19:1–13.CrossRefGoogle Scholar
  13. 13.
    Silva R, Haraguchi SK, Muniz EC, Rubira AF. Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos (Applications of lignocellulosic fibers in polymer chemistry and in composites). Quim Nova. 2009;32(3):661–71.CrossRefGoogle Scholar
  14. 14.
    Shahidi F, et al. (Ed.). Bailey’s industrial oil and fat products. New Jersey: Wiley; 2005.Google Scholar
  15. 15.
    Jacob M, Jose J, Jose S, Varughese K, Thomas S. Viscoelastic and thermal properties of woven-sisal-fabric-reinforced natural-rubber biocomposites. J Appl Polym Sci. 2010;117(1):614–21.Google Scholar
  16. 16.
    Mariano RM, de Souza Picciani PH, Nunes RC, Visconte LL. Preparation, structure, and properties of montmorillonite/cellulose II/natural rubber nanocomposites. J Appl Polym Sci. 2011;120(1):458–65.CrossRefGoogle Scholar
  17. 17.
    Maslowski M, Miedzianowska J, Strzelec K. Natural rubber biocomposites containing corn, barley and wheat straw. Polym Test. 2017;63:84–91.CrossRefGoogle Scholar
  18. 18.
    Keerthika B, Umayavalli M, Jeyalalitha T, Krishnaveni N. Coconut shell powder as cost effective filler in copolymer of acrylonitrile and butadiene rubber. Ecotoxic Environ Saf. 2016;130:1–3.CrossRefGoogle Scholar
  19. 19.
    Sareena C, Ramesan M, Purushothaman E. Utilization of peanut shell powder as a novel filler in natural rubber. J Appl Polym Sci. 2012;125(3):2322–34.CrossRefGoogle Scholar
  20. 20.
    Azwa Z, Yousif B, Manalo A, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des. 2013;47:424–42.CrossRefGoogle Scholar
  21. 21.
    Yang H-S, Wolcott M, Kim H-S, Kim H-J. Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. J Therm Anal Calorim. 2005;82(1):157–60.CrossRefGoogle Scholar
  22. 22.
    Gent AN, Walter JD. Pneumatic tire. Washington, DC: NHTSA; 2006.Google Scholar
  23. 23.
    Veiga VD. Influência da combinação sílica/negro de fumo e das etapas de processamento no desempenho de bandas de rodagem de pneu de carga. Caxias do Sul: Universidade de Caxias do Sul; 2015.Google Scholar
  24. 24.
    Wang M-J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol. 1998;71(3):520–89.  https://doi.org/10.5254/1.3538492.CrossRefGoogle Scholar
  25. 25.
    Dierkes WK. Economic mixing of silica-rubber compounds: interaction between the chemistry of the silica-silane reaction and the physics of mixing. Enschede: University of Twente; 2005.Google Scholar
  26. 26.
    Braum MV. Melhoria da interação polímero-carga através do uso de borracha de polibutadieno epoxidada. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul; 2006.Google Scholar
  27. 27.
    ASTM D 6370. Standard test method for rubber—compositional analysis by thermogravimetry (TGA); 2014.Google Scholar
  28. 28.
    ISO 11357. Differential scanning calorimetry (DSC)—part 6: determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT); 2008.Google Scholar
  29. 29.
    Arrakhiz F, El Achaby M, Benmoussa K, Bouhfid R, Essassi E, Qaiss A. Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Mater Des. 2012;40:528–35.CrossRefGoogle Scholar
  30. 30.
    Essabir H, Achaby ME, Hilali EM, Bouhfid R, Qaiss A. Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. J Bionic Eng. 2015;12(1):129–41.CrossRefGoogle Scholar
  31. 31.
    Ouajai S, Shanks R. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab. 2005;89(2):327–35.CrossRefGoogle Scholar
  32. 32.
    Littlefield B. Characterization of pecan shells for value-added applications; 2010.Google Scholar
  33. 33.
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JA. Introduction to spectroscopy. Boston: Cengage Learning; 2008.Google Scholar
  34. 34.
    Jacques RA, Lima EC, Dias SL, Mazzocato AC, Pavan FA. Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution. Sep Purif Technol. 2007;57(1):193–8.CrossRefGoogle Scholar
  35. 35.
    Albano C, Gonzalez J, Ichazo M, Kaiser D. Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab. 1999;66(2):179–90.CrossRefGoogle Scholar
  36. 36.
    Wartelle LH, Marshall WE. Nutshells as granular activated carbons: physical, chemical and adsorptive properties. J Chem Technol Biotechnol. 2001;76(5):451–5.CrossRefGoogle Scholar
  37. 37.
    Halasa AF, Gross BB, Hsu W-L. Multiple glass transition terpolymers of isoprene, butadiene, and styrene. Rubber Chem Technol. 2010;83(4):380–90.CrossRefGoogle Scholar
  38. 38.
    Rattanasom N, Saowapark T, Deeprasertkul C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test. 2007;26(3):369–77.CrossRefGoogle Scholar
  39. 39.
    Bahl K, Miyoshi T, Jana SC. Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds. Polymer. 2014;55(16):3825–35.CrossRefGoogle Scholar
  40. 40.
    Ayrilmis N, Kaymakci A, Ozdemir F. Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. J Ind Eng Chem. 2013;19(3):908–14.CrossRefGoogle Scholar
  41. 41.
    Kemp RB. Handbook of thermal analysis and calorimetry: from macromolecules to man. Amsterdam: Elsevier; 1999.Google Scholar
  42. 42.
    Yu P, He H, Jia Y, Tian S, Chen J, Jia D, et al. A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polym Test. 2016;54:176–85.CrossRefGoogle Scholar
  43. 43.
    Gregorova A, Košíková B, Moravčík R. Stabilization effect of lignin in natural rubber. Polym Degrad Stab. 2006;91(2):229–33.CrossRefGoogle Scholar
  44. 44.
    Hussin MH, Rahim AA, Ibrahim MNM, Yemloul M, Perrin D, Brosse N. Investigation on the structure and antioxidant properties of modified lignin obtained by different combinative processes of oil palm fronds (OPF) biomass. Ind Crops Prod. 2014;52:544–51.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Engenharia e Ciência dos MateriaisUniversidade de Caxias do SulCaxias do SulBrazil
  2. 2.Vipal Borrachas S.A.Nova PrataBrazil

Personalised recommendations