Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3277–3285 | Cite as

Chemico-physical characterization and evaluation of coating properties of two commercial organosilicons

Hydrophase® and Disboxan 450®
  • A. Spepi
  • S. Pizzimenti
  • C. DuceEmail author
  • G. Vozzi
  • C. De Maria
  • M. R. Tiné
Article
  • 65 Downloads

Abstract

Two commercial organosilicons, Hydrophase®, a monomeric dispersion, and Disboxan 450®, an oligomeric dispersion, were studied in pure form and applied on acrylic paint replicas. Their physico-chemical characteristics, coating properties, and interaction with acrylic paint replicas were evaluated by TG, DSC, FTIR, and contact angle measurements. Hydrophase® showed a higher interaction when used on the top of acrylic paint replicas than Disboxan 450®. No appreciable modification was detected after two years of natural ageing.

Keywords

TG-FTIR Differential scanning calorimetry ATR-FTIR Contact angle Organosilicon coatings Hydrophase® Disboxan 450® Acrylic paint coating interactions Natural ageing 

Notes

Acknowledgements

Financial support of “AGM for CuHe: Advanced Green Materials for Cultural Heritage, Progetto di ricerca industriale e sviluppo sperimentale PNR 2015-2020 Area di Specializzazione Cultural Heritage”, and of “Advanced analytical pyrolysis to study polymers in renewable energy, environment, cultural heritage, Progetto di Ricerca di Ateneo dell’Università di Pisa, PRA_2018_26” is a acknowledged.

Supplementary material

10973_2019_8830_MOESM1_ESM.doc (3 mb)
Supplementary material 1 (DOC 3051 kb)

References

  1. 1.
    Ammar S, Ramesh K, Vengadaesvaran B, Ramesh S, Arof AK. Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles. Prog Org Coat. 2016;92:54–65.  https://doi.org/10.1016/j.porgcoat.2017.05.012.CrossRefGoogle Scholar
  2. 2.
    Blanco I, Abate L, Bottino FA. Synthesis and thermal behaviour of phenyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim. 2018;131(2):843–51.  https://doi.org/10.1007/s10973-017-6608-6.CrossRefGoogle Scholar
  3. 3.
    Li J, Zhao Y, Hu J, Shu L, Shi X. Anti-icing performance of a superhydrophobic PDMS/modified nano-silica hybrid coating for insulators. J Adhes Sci Technol. 2012;26(4–5):665–79.  https://doi.org/10.1163/016942411X574826.CrossRefGoogle Scholar
  4. 4.
    Kapridaki C, Maravelaki-Kalaitzaki P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat. 2013;76(2–3):400–10.  https://doi.org/10.1016/j.porgcoat.2012.10.006.CrossRefGoogle Scholar
  5. 5.
    Jagdale P, Salimpour S, Islam MH, Cuttica F, Hernandez FCR, Tagliaferro A, et al. Flame retardant effect of nano fillers on polydimethylsiloxane composites. J Nanosci Nanotechnol. 2018;18(2):1468–73.  https://doi.org/10.1166/jnn.2018.15251.CrossRefPubMedGoogle Scholar
  6. 6.
    Ermakova E, Sysoev S, Nikolaev R, Nikulina L, Lis A, Tsyrendorzhieva I, et al. Thermal properties of some organosilicon precursors for chemical vapor deposition. J Therm Anal Calorim. 2016;126(2):609–16.  https://doi.org/10.1007/s10973-016-5563-y.CrossRefGoogle Scholar
  7. 7.
    Witucki GL. A silane primer: chemistry and applications of alkoxy silanes. J Coat Technol. 1993;65:57.Google Scholar
  8. 8.
    Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C. Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit. 2007;8(1):69–72.  https://doi.org/10.1016/j.culher.2006.06.007.CrossRefGoogle Scholar
  9. 9.
    Eduok U, Faye O, Szpunar J. Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog Org Coat. 2017;111:124–63.  https://doi.org/10.1016/j.porgcoat.2017.05.012.CrossRefGoogle Scholar
  10. 10.
    Kahraman MV, Kuğu M, Menceloğlu Y, Kayaman-Apohan N, Güngör A. The novel use of organo alkoxy silane for the synthesis of organic–inorganic hybrid coatings. J Non-Cryst Solids. 2006;352(21–22):2143–51.  https://doi.org/10.1016/j.jnoncrysol.2006.02.029.CrossRefGoogle Scholar
  11. 11.
    Li D, Xu F, Liu Z, Zhu J, Zhang Q, Shao L. The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Appl Surf Sci. 2013;266:368–74.  https://doi.org/10.1016/j.apsusc.2012.12.030.CrossRefGoogle Scholar
  12. 12.
    Fermo P, Cappelletti G, Cozzi N, Padeletti G, Kaciulis S, Brucale M, et al. Hydrophobizing coatings for cultural heritage. A detailed study of resin/stone surface interaction. Appl Phys A. 2014;116(1):341–8.  https://doi.org/10.1007/s00339-013-8127-z.CrossRefGoogle Scholar
  13. 13.
    Brachaczek W. Comparative analysis of organosilicon polymers of varied chemical composition in respect of their application in silicone-coating manufacture. Prog Org Coat. 2014;77(3):609–15.  https://doi.org/10.1016/j.porgcoat.2013.11.026.CrossRefGoogle Scholar
  14. 14.
    Thomas TH, Kendrick T. Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci Part A 2 Polym Phys. 1969;7(3):537–49.  https://doi.org/10.1002/pol.1969.160070308.CrossRefGoogle Scholar
  15. 15.
    Jovanovic JD, Govedarica MN, Dvornic PR, Popovic IG. The thermogravimetric analysis of some polysiloxanes. Polym Degrad Stab. 1998;61(1):87–93.  https://doi.org/10.1016/S0141-3910(97)00135-3.CrossRefGoogle Scholar
  16. 16.
    Deshpande G, Rezac ME. The effect of phenyl content on the degradation of poly (dimethyl diphenyl) siloxane copolymers. Polym Degrad Stab. 2001;74(2):363–70.  https://doi.org/10.1016/S0141-3910(01)00186-0.CrossRefGoogle Scholar
  17. 17.
    Tomer NS, Delor-Jestin F, Frezet L, Lacoste J. Oxidation, chain scission and cross-linking studies of polysiloxanes upon ageings. Open J Org Polym Mater. 2012;2(02):13.  https://doi.org/10.4236/ojopm.2012.22003.CrossRefGoogle Scholar
  18. 18.
    Camino G, Lomakin S, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer. 2001;42(6):2395–402.  https://doi.org/10.1016/S0032-3861(00)00652-2.CrossRefGoogle Scholar
  19. 19.
    Camino G, Lomakin S, Lageard M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer. 2002;43(7):2011–5.  https://doi.org/10.1016/S0032-3861(01)00785-6.CrossRefGoogle Scholar
  20. 20.
    Stewart A, Schlosser B, Douglas EP. Surface modification of cured cement pastes by silane coupling agents. ACS Appl Mater Interfaces. 2013;5(4):1218–25.  https://doi.org/10.1021/am301967v.CrossRefPubMedGoogle Scholar
  21. 21.
    Colombini M, Modugno F, Di Girolamo F, La Nasa J, Duce C, Ghezzi L et al. Keith Haring and the city of the Leaning Tower: preservation of the mural” Tuttomondo”. Conservation Issues in Modern and Contemporary Murals. Cambridge Scholars Publishing; 2015. ISBN 978-1-4438-7233-1.Google Scholar
  22. 22.
    Urzì C, De Leo F. Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int Biodeterior Biodegrad. 2007;60(1):25–34.  https://doi.org/10.1016/j.ibiod.2006.11.003.CrossRefGoogle Scholar
  23. 23.
    Crisci GM, La Russa MF, Macchione M, Malagodi M, Palermo AM, Ruffolo SA. Study of archaeological underwater finds: deterioration and conservation. Appl Phys A. 2010;100(3):855–63.  https://doi.org/10.1007/s00339-010-5661-9.CrossRefGoogle Scholar
  24. 24.
    Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf Physicochem Eng Aspects. 2010;364(1):72–81.  https://doi.org/10.1016/j.colsurfa.2010.04.040.CrossRefGoogle Scholar
  25. 25.
    Sun JT, Huang YD, Cao HL, Gong GF. Effects of ambient-temperature curing agents on the thermal stability of poly(methylphenylsiloxane). Polym Degrad Stab. 2004;85(1):725–31.  https://doi.org/10.1016/j.polymdegradstab.2004.03.018.CrossRefGoogle Scholar
  26. 26.
    La Nasa J, Orsini S, Degano I, Rava A, Modugno F, Colombini MP. A chemical study of organic materials in three murals by Keith Haring: a comparison of painting techniques. Microchem J. 2016;124:940–8.  https://doi.org/10.1016/j.microc.2015.06.003.CrossRefGoogle Scholar
  27. 27.
    Pandele A, Andronescu C, Ghebaur A, Garea S, Iovu H. New biocompatible mesoporous silica/polysaccharide hybrid materials as possible drug delivery systems. Materials. 2019;12(1):15.  https://doi.org/10.3390/ma12010015.CrossRefGoogle Scholar
  28. 28.
    Catauro M, Tranquillo E, Salzillo A, Capasso L, Illiano M, Sapio L, et al. Silica/Polyethylene glycol hybrid materials prepared by a sol-Gel method and containing chlorogenic acid. Molecules. 2018;23(10):2447.  https://doi.org/10.3390/molecules23102447.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    González-Rivera J, Iglio R, Barillaro G, Duce C, Tinè M. Structural and thermoanalytical characterization of 3D porous PDMS foam materials: the effect of impurities derived from a sugar templating process. Polymers. 2018;10(6):616.  https://doi.org/10.3390/polym10060616.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hofman R, Westheim JGF, Pouwel I, Fransen T, Gellings PJ. FTIR and XPS studies on corrosion-resistant SiO2 coatings as a function of the humidity during deposition. Surf Interface Anal. 1996;24(1):1–6.  https://doi.org/10.1002/(SICI)1096-9918(199601)24:1%3c1:AID-SIA73%3e3.0.CO;2-I.CrossRefGoogle Scholar
  31. 31.
    de la Fuente JL, Fernández-García M, López Madruga E. Characterization and thermal properties of poly(n-butyl acrylate-g-styrene) graft copolymers. J Appl Polym Sci. 2001;80(5):783–9.  https://doi.org/10.1002/1097-4628(20010502)80:5%3c783:AID-APP1155%3e3.0.CO;2-5.CrossRefGoogle Scholar
  32. 32.
    Wang ZY, Liu FC, Han EH, Ke W. Ageing resistance and corrosion resistance of silicone-epoxy and polyurethane topcoats used in sea splash zone. Mater Corros. 2013;64(5):446–53.  https://doi.org/10.1002/maco.201106269.CrossRefGoogle Scholar
  33. 33.
    Baudys M, Krýsa J, Zlámal M, Mills A. Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem Eng J. 2015;261:83–7.  https://doi.org/10.1016/j.cej.2014.03.112.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly
  2. 2.“E. Piaggio” Research Center, University of PisaPisaItaly

Personalised recommendations